mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 cbf88a46fa
			
		
	
	cbf88a46fa
	
	
	
		
			
			* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
		
			
				
	
	
		
			81 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| English | [简体中文](README_CN.md)
 | |
| # YOLOX Python Deployment Example
 | |
| 
 | |
| Two steps before deployment
 | |
| 
 | |
| - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy  Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)  
 | |
| - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
 | |
| 
 | |
| This directory provides examples that `infer.py` fast finishes the deployment of YOLOX on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
 | |
| 
 | |
| ```bash
 | |
| # Download the example code for deployment
 | |
| git clone https://github.com/PaddlePaddle/FastDeploy.git
 | |
| cd examples/vision/detection/yolox/python/
 | |
| 
 | |
| # Download YOLOX model files and test images
 | |
| wget https://bj.bcebos.com/paddlehub/fastdeploy/yolox_s.onnx
 | |
| wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
 | |
| 
 | |
| # CPU inference
 | |
| python infer.py --model yolox_s.onnx --image 000000014439.jpg --device cpu
 | |
| # GPU inference
 | |
| python infer.py --model yolox_s.onnx --image 000000014439.jpg --device gpu
 | |
| # TensorRT inference on GPU (TensorRT in SDK. No need Separate installation)
 | |
| python infer.py --model yolox_s.onnx --image 000000014439.jpg --device gpu --use_trt True
 | |
| ```
 | |
| 
 | |
| The visualized result after running is as follows
 | |
| 
 | |
| <img width="640" src="https://user-images.githubusercontent.com/67993288/184301746-04595d76-454a-4f07-8c7d-6f41418f8ae3.jpg">
 | |
| 
 | |
| ## YOLOX Python Interface
 | |
| 
 | |
| ```python
 | |
| fastdeploy.vision.detection.YOLOX(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
 | |
| ```
 | |
| 
 | |
| YOLOX model loading and initialization, among which model_file is the exported ONNX model format
 | |
| 
 | |
| **Parameter**
 | |
| 
 | |
| > * **model_file**(str): Model file path 
 | |
| > * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format
 | |
| > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
 | |
| > * **model_format**(ModelFormat): Model format. ONNX format by default
 | |
| 
 | |
| ### predict function
 | |
| 
 | |
| > ```python
 | |
| > YOLOX.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
 | |
| > ```
 | |
| >
 | |
| > Model prediction interface. Input images and output results
 | |
| >
 | |
| > **Parameter**
 | |
| >
 | |
| > > * **image_data**(np.ndarray): Input data in HWC or BGR format
 | |
| > > * **conf_threshold**(float): Filtering threshold of detection box confidence
 | |
| > > * **nms_iou_threshold**(float): iou threshold during NMS processing
 | |
| 
 | |
| > **Return**
 | |
| >
 | |
| > > Return `fastdeploy.vision.DetectionResult` structure, refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for its description
 | |
| 
 | |
| ### Class Member Property
 | |
| #### Pre-processing Parameter
 | |
| Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
 | |
| 
 | |
| > >* **size**(list[int]): This parameter changes the size of the resize during preprocessing, containing two integer elements for [width, height] with default value [640, 640]
 | |
| > >* **padding_value**(list[float]): This parameter is used to change the padding value of images during resize, containing three floating-point elements that represent the value of three channels. Default [114, 114, 114]
 | |
| > >* **is_decode_exported**(bool): The default value is `is_decode_exported=False`. The official default export does not have the decoded part. If you export the model with the decoded part, please set this parameter to true
 | |
| 
 | |
| 
 | |
| 
 | |
| ## Other Documents
 | |
| 
 | |
| - [YOLOX Model Description](..)
 | |
| - [YOLOX C++ Deployment](../cpp)
 | |
| - [Model Prediction Results](../../../../../docs/api/vision_results/)
 | |
| - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)
 |