mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-30 11:26:39 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			79 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # PaddleClas 服务化部署示例
 | ||
| 
 | ||
| 在服务化部署前,需确认
 | ||
| 
 | ||
| - 1. 服务化镜像的软硬件环境要求和镜像拉取命令请参考[FastDeploy服务化部署](../../../../../serving/README_CN.md)
 | ||
| 
 | ||
| 
 | ||
| ## 启动服务
 | ||
| 
 | ||
| ```bash
 | ||
| #下载部署示例代码
 | ||
| git clone https://github.com/PaddlePaddle/FastDeploy.git
 | ||
| cd FastDeploy/examples/vision/classification/paddleclas/serving
 | ||
| 
 | ||
| # 下载ResNet50_vd模型文件和测试图片
 | ||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
 | ||
| tar -xvf ResNet50_vd_infer.tgz
 | ||
| wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
 | ||
| 
 | ||
| # 将配置文件放入预处理目录
 | ||
| mv ResNet50_vd_infer/inference_cls.yaml models/preprocess/1/inference_cls.yaml
 | ||
| 
 | ||
| # 将模型放入 models/runtime/1目录下, 并重命名为model.pdmodel和model.pdiparams
 | ||
| mv ResNet50_vd_infer/inference.pdmodel models/runtime/1/model.pdmodel
 | ||
| mv ResNet50_vd_infer/inference.pdiparams models/runtime/1/model.pdiparams
 | ||
| 
 | ||
| # 拉取fastdeploy镜像(x.y.z为镜像版本号,需参照serving文档替换为数字)
 | ||
| # GPU镜像
 | ||
| docker pull registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10
 | ||
| # CPU镜像
 | ||
| docker pull registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-cpu-only-21.10
 | ||
| 
 | ||
| # 运行容器.容器名字为 fd_serving, 并挂载当前目录为容器的 /serving 目录
 | ||
| nvidia-docker run -it --net=host --name fd_serving -v `pwd`/:/serving registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10  bash
 | ||
| 
 | ||
| # 启动服务(不设置CUDA_VISIBLE_DEVICES环境变量,会拥有所有GPU卡的调度权限)
 | ||
| CUDA_VISIBLE_DEVICES=0 fastdeployserver --model-repository=/serving/models --backend-config=python,shm-default-byte-size=10485760
 | ||
| ```
 | ||
| >> **注意**:
 | ||
| 
 | ||
| >> 拉取其他硬件上的镜像请看[服务化部署主文档](../../../../../serving/README_CN.md)
 | ||
| 
 | ||
| >> 执行fastdeployserver启动服务出现"Address already in use", 请使用`--grpc-port`指定端口号来启动服务,同时更改客户端示例中的请求端口号.
 | ||
| 
 | ||
| >> 其他启动参数可以使用 fastdeployserver --help 查看
 | ||
| 
 | ||
| 服务启动成功后, 会有以下输出:
 | ||
| ```
 | ||
| ......
 | ||
| I0928 04:51:15.784517 206 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001
 | ||
| I0928 04:51:15.785177 206 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000
 | ||
| I0928 04:51:15.826578 206 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002
 | ||
| ```
 | ||
| 
 | ||
| 
 | ||
| ## 客户端请求
 | ||
| 
 | ||
| 在物理机器中执行以下命令,发送grpc请求并输出结果
 | ||
| ```
 | ||
| #下载测试图片
 | ||
| wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
 | ||
| 
 | ||
| #安装客户端依赖
 | ||
| python3 -m pip install tritonclient\[all\]
 | ||
| 
 | ||
| # 发送请求
 | ||
| python3 paddlecls_grpc_client.py
 | ||
| ```
 | ||
| 
 | ||
| 发送请求成功后,会返回json格式的检测结果并打印输出:
 | ||
| ```
 | ||
| output_name: CLAS_RESULT
 | ||
| {'label_ids': [153], 'scores': [0.6862289905548096]}
 | ||
| ```
 | ||
| 
 | ||
| ## 配置修改
 | ||
| 
 | ||
| 当前默认配置在GPU上运行TensorRT引擎, 如果要在CPU或其他推理引擎上运行。 需要修改`models/runtime/config.pbtxt`中配置,详情请参考[配置文档](../../../../../serving/docs/zh_CN/model_configuration.md)
 | 
