mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
c7c29f94c159ba6e79c63152bb807fec33e9cdae

* [docs] update osx and win prebuilt cpp libs links (#130) * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update requirements.txt * Update README.md Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com>
⚡️FastDeploy是一款简单易用的推理部署工具箱。覆盖业界主流优质预训练模型并提供开箱即用的开发体验,包括图像分类、目标检测、图像分割、人脸检测、人体关键点识别、文字识别等多任务,满足开发者多场景,多硬件、多平台的快速部署需求。
近期更新
- 🔥 2022.8.18:发布FastDeploy release/v0.2.0
- 服务端全新升级:一套SDK,覆盖全量模型
- 端侧继ARM CPU后,延伸至瑞芯微、晶晨、恩智浦等NPU能力
- 发布轻量化目标检测Picodet-NPU模型,提供低门槛INT8全量化能力
内容目录
- 服务端
- 端侧
- 社区交流
- Acknowledge
- License
1. 服务端快速开始
1.1 快速安装 FastDeploy Python/C++ 库
环境依赖
- Linux x64/aarch64
- Windows 10
- Mac OSX x86/arm64
- cuda >= 11.2
- cudnn >= 8.0
- python 3.6~3.9(Windows 10 3.8~3.9)
安装 CPU Python 版本
pip install numpy opencv-python fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
安装 GPU Python 版本
pip install numpy opencv-python fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
安装 C++ 版本
- 参考C++预编译库下载文档
准备目标检测模型和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
1.2 Python预测示例
# GPU/TensorRT部署参考 examples/vision/detection/paddledetection/python
import cv2
import fastdeploy.vision as vision
model = vision.detection.PPYOLOE("model.pdmodel", "model.pdiparams", "infer_cfg.yml")
im = cv2.imread("000000014439.jpg")
result = model.predict(im.copy())
print(result)
vis_im = vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)
1.3 C++预测示例
// GPU/TensorRT部署参考 examples/vision/detection/paddledetection/cpp
#include "fastdeploy/vision.h"
int main(int argc, char* argv[]) {
namespace vision = fastdeploy::vision;
auto model = vision::detection::PPYOLOE("model.pdmodel", "model.pdiparams", "infer_cfg.yml");
auto im = cv::imread("000000014439.jpg");
vision::DetectionResult res;
model.Predict(&im, &res)
auto vis_im = vision::Visualize::VisDetection(im, res, 0.5);
cv::imwrite("vis_image.jpg", vis_im);
}
更多部署案例请参考视觉模型部署示例 .
2. 服务端模型列表 🔥🔥🔥
符号说明: (1) ✅: 已经支持; (2) ❔: 未来支持; (3) ❌: 暂不支持; (4) --: 暂不考虑;
链接说明:「模型列」会跳转到模型推理Demo代码
任务场景 | 模型 | API | Linux | Linux | Win | Win | Mac | Mac | Linux | Linux |
---|---|---|---|---|---|---|---|---|---|---|
--- | --- | --- | X86 CPU | NVIDIA GPU | Intel CPU | NVIDIA GPU | Intel CPU | Arm CPU | AArch64 CPU | NVIDIA Jetson |
Classification | PaddleClas/ResNet50 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/PPLCNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/PPLCNetv2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/EfficientNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/GhostNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/MobileNetV1 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/MobileNetV2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/MobileNetV3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/ShuffleNetV2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/SqueeezeNetV1.1 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/Inceptionv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/PPHGNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/SwinTransformer | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | PaddleDetection/PPYOLOE | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | PaddleDetection/PicoDet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | PaddleDetection/YOLOX | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | PaddleDetection/YOLOv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | PaddleDetection/PPYOLO | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❔ |
Detection | PaddleDetection/PPYOLOv2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❔ |
Detection | PaddleDetection/FasterRCNN | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❔ |
Detection | Megvii-BaseDetection/YOLOX | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | WongKinYiu/YOLOv7 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | meituan/YOLOv6 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | ultralytics/YOLOv5 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | WongKinYiu/YOLOR | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | WongKinYiu/ScaledYOLOv4 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | ppogg/YOLOv5Lite | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | RangiLyu/NanoDetPlus | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/PPLiteSeg | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/PPHumanSegLite | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/HRNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/PPHumanSegServer | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/Unet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/Deeplabv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceDetection | biubug6/RetinaFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceDetection | Linzaer/UltraFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceDetection | deepcam-cn/YOLOv5Face | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceDetection | deepinsight/SCRFD | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceRecognition | deepinsight/ArcFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceRecognition | deepinsight/CosFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceRecognition | deepinsight/PartialFC | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceRecognition | deepinsight/VPL | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Matting | ZHKKKe/MODNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
3. 端侧文档
3.1 端侧部署
- ARM Linux 系统
3.2 移动端部署
3.3 自定义模型部署
3.4 NPU部署
4. 端侧模型列表
任务场景 | 模型 | 大小(MB) | Linux | Android | iOS | Linux | Linux | Linux | 更新中... |
---|---|---|---|---|---|---|---|---|---|
--- | --- | --- | ARM CPU | ARM CPU | ARM CPU | 瑞芯微NPU RV1109 RV1126 RK1808 |
晶晨NPU A311D S905D C308X |
恩智浦NPU i.MX 8M Plus |
更新中...| |
Classification | PP-LCNet | 11.9 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | PP-LCNetv2 | 26.6 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | EfficientNet | 31.4 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | GhostNet | 20.8 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | MobileNetV1 | 17 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | MobileNetV2 | 14.2 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | MobileNetV3 | 22 | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
Classification | ShuffleNetV2 | 9.2 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | SqueezeNetV1.1 | 5 | ✅ | ✅ | ✅ | ||||
Classification | Inceptionv3 | 95.5 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | PP-HGNet | 59 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | SwinTransformer_224_win7 | 352.7 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | PP-PicoDet_s_320_coco | 4.1 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | PP-PicoDet_s_320_lcnet | 4.9 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | CenterNet | 4.8 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | YOLOv3_MobileNetV3 | 94.6 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | PP-YOLO_tiny_650e_coco | 4.4 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | SSD_MobileNetV1_300_120e_voc | 23.3 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | PP-YOLO_ResNet50vd | 188.5 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | PP-YOLOv2_ResNet50vd | 218.7 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | PP-YOLO_crn_l_300e_coco | 209.1 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | YOLOv5s | 29.3 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
FaceDetection | BlazeFace | 1.5 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
FaceDetection | RetinaFace | 1.7 | ✅ | ❌ | ❌ | -- | -- | -- | -- |
KeypointsDetection | PP-TinyPose | 5.5 | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
Segmentation | PP-LiteSeg(STDC1) | 32.2 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Segmentation | PP-HumanSeg-Lite | 0.556 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Segmentation | HRNet-w18 | 38.7 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Segmentation | PP-HumanSeg-Server | 107.2 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Segmentation | Unet | 53.7 | ❌ | ✅ | ❌ | -- | -- | -- | -- |
OCR | PP-OCRv1 | 2.3+4.4 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
OCR | PP-OCRv2 | 2.3+4.4 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
OCR | PP-OCRv3 | 2.4+10.6 | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
OCR | PP-OCRv3-tiny | 2.4+10.7 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
5. 社区交流
- 加入社区👬: 微信扫描二维码后,填写问卷加入交流群,与开发者共同讨论推理部署痛点问题
6. Acknowledge
本项目中SDK生成和下载使用了EasyEdge中的免费开放能力,再次表示感谢。
7. License
FastDeploy遵循Apache-2.0开源协议。
Description
⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.
androidgraphcoreinteljetsonkunlunobject-detectiononnxonnxruntimeopenvinopicodetrockchipservingstable-diffusiontensorrtuieyolov5yolov8
Readme
Apache-2.0
158 MiB
Languages
Python
45%
C++
28.9%
Cuda
25.3%
Shell
0.5%
C
0.2%
Other
0.1%