mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 08:16:42 +08:00

* support bad_words_token_ids * docs * fix test * fix * bad words support kvcache v1 and token ids * fix
1136 lines
38 KiB
Python
1136 lines
38 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import os
|
||
import re
|
||
import shutil
|
||
import signal
|
||
import socket
|
||
import subprocess
|
||
import sys
|
||
import time
|
||
|
||
import openai
|
||
import pytest
|
||
import requests
|
||
|
||
# Read ports from environment variables; use default values if not set
|
||
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
|
||
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
|
||
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
|
||
|
||
# List of ports to clean before and after tests
|
||
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
|
||
|
||
|
||
def is_port_open(host: str, port: int, timeout=1.0):
|
||
"""
|
||
Check if a TCP port is open on the given host.
|
||
Returns True if connection succeeds, False otherwise.
|
||
"""
|
||
try:
|
||
with socket.create_connection((host, port), timeout):
|
||
return True
|
||
except Exception:
|
||
return False
|
||
|
||
|
||
def kill_process_on_port(port: int):
|
||
"""
|
||
Kill processes that are listening on the given port.
|
||
Uses `lsof` to find process ids and sends SIGKILL.
|
||
"""
|
||
try:
|
||
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
|
||
current_pid = os.getpid()
|
||
parent_pid = os.getppid()
|
||
for pid in output.splitlines():
|
||
pid = int(pid)
|
||
if pid in (current_pid, parent_pid):
|
||
print(f"Skip killing current process (pid={pid}) on port {port}")
|
||
continue
|
||
os.kill(pid, signal.SIGKILL)
|
||
print(f"Killed process on port {port}, pid={pid}")
|
||
except subprocess.CalledProcessError:
|
||
pass
|
||
|
||
|
||
def clean_ports():
|
||
"""
|
||
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
|
||
"""
|
||
for port in PORTS_TO_CLEAN:
|
||
kill_process_on_port(port)
|
||
time.sleep(2)
|
||
|
||
|
||
@pytest.fixture(scope="session", autouse=True)
|
||
def setup_and_run_server():
|
||
"""
|
||
Pytest fixture that runs once per test session:
|
||
- Cleans ports before tests
|
||
- Starts the API server as a subprocess
|
||
- Waits for server port to open (up to 30 seconds)
|
||
- Tears down server after all tests finish
|
||
"""
|
||
print("Pre-test port cleanup...")
|
||
clean_ports()
|
||
print("log dir clean ")
|
||
if os.path.exists("log") and os.path.isdir("log"):
|
||
shutil.rmtree("log")
|
||
base_path = os.getenv("MODEL_PATH")
|
||
if base_path:
|
||
model_path = os.path.join(base_path, "ernie-4_5-21b-a3b-bf16-paddle")
|
||
else:
|
||
model_path = "./ernie-4_5-21b-a3b-bf16-paddle"
|
||
|
||
log_path = "server.log"
|
||
cmd = [
|
||
sys.executable,
|
||
"-m",
|
||
"fastdeploy.entrypoints.openai.api_server",
|
||
"--model",
|
||
model_path,
|
||
"--port",
|
||
str(FD_API_PORT),
|
||
"--tensor-parallel-size",
|
||
"1",
|
||
"--engine-worker-queue-port",
|
||
str(FD_ENGINE_QUEUE_PORT),
|
||
"--metrics-port",
|
||
str(FD_METRICS_PORT),
|
||
"--max-model-len",
|
||
"32768",
|
||
"--max-num-seqs",
|
||
"128",
|
||
"--quantization",
|
||
"wint4",
|
||
"--use-cudagraph",
|
||
"--graph-optimization-config",
|
||
'{"cudagraph_capture_sizes": [1]}',
|
||
]
|
||
|
||
# Start subprocess in new process group
|
||
with open(log_path, "w") as logfile:
|
||
process = subprocess.Popen(
|
||
cmd,
|
||
stdout=logfile,
|
||
stderr=subprocess.STDOUT,
|
||
start_new_session=True, # Enables killing full group via os.killpg
|
||
)
|
||
|
||
# Wait up to 300 seconds for API server to be ready
|
||
for _ in range(300):
|
||
if is_port_open("127.0.0.1", FD_API_PORT):
|
||
print(f"API server is up on port {FD_API_PORT}")
|
||
break
|
||
time.sleep(1)
|
||
else:
|
||
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
|
||
try:
|
||
os.killpg(process.pid, signal.SIGTERM)
|
||
except Exception as e:
|
||
print(f"Failed to kill process group: {e}")
|
||
raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
|
||
|
||
yield # Run tests
|
||
|
||
print("\n===== Post-test server cleanup... =====")
|
||
try:
|
||
os.killpg(process.pid, signal.SIGTERM)
|
||
print(f"API server (pid={process.pid}) terminated")
|
||
except Exception as e:
|
||
print(f"Failed to terminate API server: {e}")
|
||
|
||
|
||
@pytest.fixture(scope="session")
|
||
def api_url(request):
|
||
"""
|
||
Returns the API endpoint URL for chat completions.
|
||
"""
|
||
return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions"
|
||
|
||
|
||
@pytest.fixture(scope="session")
|
||
def metrics_url(request):
|
||
"""
|
||
Returns the metrics endpoint URL.
|
||
"""
|
||
return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics"
|
||
|
||
|
||
@pytest.fixture
|
||
def headers():
|
||
"""
|
||
Returns common HTTP request headers.
|
||
"""
|
||
return {"Content-Type": "application/json"}
|
||
|
||
|
||
@pytest.fixture
|
||
def consistent_payload():
|
||
"""
|
||
Returns a fixed payload for consistency testing,
|
||
including a fixed random seed and temperature.
|
||
"""
|
||
return {
|
||
"messages": [{"role": "user", "content": "用一句话介绍 PaddlePaddle"}],
|
||
"temperature": 0.9,
|
||
"top_p": 0, # fix top_p to reduce randomness
|
||
"seed": 13, # fixed random seed
|
||
}
|
||
|
||
|
||
# ==========================
|
||
# Helper function to calculate difference rate between two texts
|
||
# ==========================
|
||
def calculate_diff_rate(text1, text2):
|
||
"""
|
||
Calculate the difference rate between two strings
|
||
based on the normalized Levenshtein edit distance.
|
||
Returns a float in [0,1], where 0 means identical.
|
||
"""
|
||
if text1 == text2:
|
||
return 0.0
|
||
|
||
len1, len2 = len(text1), len(text2)
|
||
dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
|
||
|
||
for i in range(len1 + 1):
|
||
for j in range(len2 + 1):
|
||
if i == 0 or j == 0:
|
||
dp[i][j] = i + j
|
||
elif text1[i - 1] == text2[j - 1]:
|
||
dp[i][j] = dp[i - 1][j - 1]
|
||
else:
|
||
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
|
||
|
||
edit_distance = dp[len1][len2]
|
||
max_len = max(len1, len2)
|
||
return edit_distance / max_len if max_len > 0 else 0.0
|
||
|
||
|
||
# ==========================
|
||
# Consistency test for repeated runs with fixed payload
|
||
# ==========================
|
||
def test_consistency_between_runs(api_url, headers, consistent_payload):
|
||
"""
|
||
Test that two runs with the same fixed input produce similar outputs.
|
||
"""
|
||
# First request
|
||
resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
|
||
assert resp1.status_code == 200
|
||
result1 = resp1.json()
|
||
content1 = result1["choices"][0]["message"]["content"]
|
||
|
||
# Second request
|
||
resp2 = requests.post(api_url, headers=headers, json=consistent_payload)
|
||
assert resp2.status_code == 200
|
||
result2 = resp2.json()
|
||
content2 = result2["choices"][0]["message"]["content"]
|
||
|
||
# Calculate difference rate
|
||
diff_rate = calculate_diff_rate(content1, content2)
|
||
|
||
# Verify that the difference rate is below the threshold
|
||
assert diff_rate < 0.05, f"Output difference too large ({diff_rate:.4%})"
|
||
|
||
|
||
# ==========================
|
||
# OpenAI Client chat.completions Test
|
||
# ==========================
|
||
|
||
|
||
@pytest.fixture
|
||
def openai_client():
|
||
ip = "0.0.0.0"
|
||
service_http_port = str(FD_API_PORT)
|
||
client = openai.Client(
|
||
base_url=f"http://{ip}:{service_http_port}/v1",
|
||
api_key="EMPTY_API_KEY",
|
||
)
|
||
return client
|
||
|
||
|
||
# Non-streaming test
|
||
def test_non_streaming_chat(openai_client):
|
||
"""
|
||
Test non-streaming chat functionality with the local service
|
||
"""
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[
|
||
{"role": "system", "content": "You are a helpful AI assistant."},
|
||
{"role": "user", "content": "List 3 countries and their capitals."},
|
||
],
|
||
temperature=1,
|
||
max_tokens=1024,
|
||
stream=False,
|
||
)
|
||
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
assert hasattr(response.choices[0], "message")
|
||
assert hasattr(response.choices[0].message, "content")
|
||
|
||
|
||
# Streaming test
|
||
def test_streaming_chat(openai_client, capsys):
|
||
"""
|
||
Test streaming chat functionality with the local service
|
||
"""
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[
|
||
{"role": "system", "content": "You are a helpful AI assistant."},
|
||
{"role": "user", "content": "List 3 countries and their capitals."},
|
||
{
|
||
"role": "assistant",
|
||
"content": "China(Beijing), France(Paris), Australia(Canberra).",
|
||
},
|
||
{"role": "user", "content": "OK, tell more."},
|
||
],
|
||
temperature=1,
|
||
max_tokens=1024,
|
||
stream=True,
|
||
)
|
||
|
||
output = []
|
||
for chunk in response:
|
||
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
||
output.append(chunk.choices[0].delta.content)
|
||
assert len(output) > 2
|
||
|
||
|
||
# ==========================
|
||
# OpenAI Client completions Test
|
||
# ==========================
|
||
|
||
|
||
def test_non_streaming(openai_client):
|
||
"""
|
||
Test non-streaming chat functionality with the local service
|
||
"""
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
max_tokens=1024,
|
||
stream=False,
|
||
)
|
||
|
||
# Assertions to check the response structure
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
|
||
|
||
def test_streaming(openai_client, capsys):
|
||
"""
|
||
Test streaming functionality with the local service
|
||
"""
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
max_tokens=1024,
|
||
stream=True,
|
||
)
|
||
|
||
# Collect streaming output
|
||
output = []
|
||
for chunk in response:
|
||
output.append(chunk.choices[0].text)
|
||
assert len(output) > 0
|
||
|
||
|
||
# ==========================
|
||
# OpenAI Client additional chat/completions test
|
||
# ==========================
|
||
|
||
|
||
def test_non_streaming_with_stop_str(openai_client):
|
||
"""
|
||
Test non-streaming chat functionality with the local service
|
||
"""
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"include_stop_str_in_output": True},
|
||
stream=False,
|
||
)
|
||
# Assertions to check the response structure
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
assert response.choices[0].message.content.endswith("</s>")
|
||
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"include_stop_str_in_output": False},
|
||
stream=False,
|
||
)
|
||
# Assertions to check the response structure
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
assert not response.choices[0].message.content.endswith("</s>")
|
||
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
max_tokens=1024,
|
||
stream=False,
|
||
)
|
||
assert not response.choices[0].text.endswith("</s>")
|
||
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
max_tokens=1024,
|
||
extra_body={"include_stop_str_in_output": True},
|
||
stream=False,
|
||
)
|
||
assert response.choices[0].text.endswith("</s>")
|
||
|
||
|
||
def test_streaming_with_stop_str(openai_client):
|
||
"""
|
||
Test non-streaming chat functionality with the local service
|
||
"""
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"include_stop_str_in_output": True},
|
||
stream=True,
|
||
)
|
||
# Assertions to check the response structure
|
||
last_token = ""
|
||
for chunk in response:
|
||
last_token = chunk.choices[0].delta.content
|
||
assert last_token == "</s>"
|
||
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"include_stop_str_in_output": False},
|
||
stream=True,
|
||
)
|
||
# Assertions to check the response structure
|
||
last_token = ""
|
||
for chunk in response:
|
||
last_token = chunk.choices[0].delta.content
|
||
assert last_token != "</s>"
|
||
|
||
response_1 = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
max_tokens=10,
|
||
stream=True,
|
||
)
|
||
last_token = ""
|
||
for chunk in response_1:
|
||
last_token = chunk.choices[0].text
|
||
assert not last_token.endswith("</s>")
|
||
|
||
response_1 = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
max_tokens=10,
|
||
extra_body={"include_stop_str_in_output": True},
|
||
stream=True,
|
||
)
|
||
last_token = ""
|
||
for chunk in response_1:
|
||
last_token = chunk.choices[0].text
|
||
assert last_token.endswith("</s>")
|
||
|
||
|
||
def test_non_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||
"""
|
||
Test return_token_ids option in non-streaming chat functionality with the local service
|
||
"""
|
||
# enable return_token_ids
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"return_token_ids": True},
|
||
stream=False,
|
||
)
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
assert hasattr(response.choices[0], "message")
|
||
assert hasattr(response.choices[0].message, "prompt_token_ids")
|
||
assert isinstance(response.choices[0].message.prompt_token_ids, list)
|
||
assert hasattr(response.choices[0].message, "completion_token_ids")
|
||
assert isinstance(response.choices[0].message.completion_token_ids, list)
|
||
|
||
# disable return_token_ids
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"return_token_ids": False},
|
||
stream=False,
|
||
)
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
assert hasattr(response.choices[0], "message")
|
||
assert hasattr(response.choices[0].message, "prompt_token_ids")
|
||
assert response.choices[0].message.prompt_token_ids is None
|
||
assert hasattr(response.choices[0].message, "completion_token_ids")
|
||
assert response.choices[0].message.completion_token_ids is None
|
||
|
||
|
||
def test_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||
"""
|
||
Test return_token_ids option in streaming chat functionality with the local service
|
||
"""
|
||
# enable return_token_ids
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"return_token_ids": True},
|
||
stream=True,
|
||
)
|
||
is_first_chunk = True
|
||
for chunk in response:
|
||
assert hasattr(chunk, "choices")
|
||
assert len(chunk.choices) > 0
|
||
assert hasattr(chunk.choices[0], "delta")
|
||
assert hasattr(chunk.choices[0].delta, "prompt_token_ids")
|
||
assert hasattr(chunk.choices[0].delta, "completion_token_ids")
|
||
if is_first_chunk:
|
||
is_first_chunk = False
|
||
assert isinstance(chunk.choices[0].delta.prompt_token_ids, list)
|
||
assert chunk.choices[0].delta.completion_token_ids is None
|
||
else:
|
||
assert chunk.choices[0].delta.prompt_token_ids is None
|
||
assert isinstance(chunk.choices[0].delta.completion_token_ids, list)
|
||
|
||
# disable return_token_ids
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"return_token_ids": False},
|
||
stream=True,
|
||
)
|
||
for chunk in response:
|
||
assert hasattr(chunk, "choices")
|
||
assert len(chunk.choices) > 0
|
||
assert hasattr(chunk.choices[0], "delta")
|
||
assert hasattr(chunk.choices[0].delta, "prompt_token_ids")
|
||
assert chunk.choices[0].delta.prompt_token_ids is None
|
||
assert hasattr(chunk.choices[0].delta, "completion_token_ids")
|
||
assert chunk.choices[0].delta.completion_token_ids is None
|
||
|
||
|
||
def test_non_streaming_completion_with_return_token_ids(openai_client, capsys):
|
||
"""
|
||
Test return_token_ids option in non-streaming completion functionality with the local service
|
||
"""
|
||
# enable return_token_ids
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"return_token_ids": True},
|
||
stream=False,
|
||
)
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
assert hasattr(response.choices[0], "prompt_token_ids")
|
||
assert isinstance(response.choices[0].prompt_token_ids, list)
|
||
assert hasattr(response.choices[0], "completion_token_ids")
|
||
assert isinstance(response.choices[0].completion_token_ids, list)
|
||
|
||
# disable return_token_ids
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"return_token_ids": False},
|
||
stream=False,
|
||
)
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
assert hasattr(response.choices[0], "prompt_token_ids")
|
||
assert response.choices[0].prompt_token_ids is None
|
||
assert hasattr(response.choices[0], "completion_token_ids")
|
||
assert response.choices[0].completion_token_ids is None
|
||
|
||
|
||
def test_streaming_completion_with_return_token_ids(openai_client, capsys):
|
||
"""
|
||
Test return_token_ids option in streaming completion functionality with the local service
|
||
"""
|
||
# enable return_token_ids
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"return_token_ids": True},
|
||
stream=True,
|
||
)
|
||
is_first_chunk = True
|
||
for chunk in response:
|
||
assert hasattr(chunk, "choices")
|
||
assert len(chunk.choices) > 0
|
||
assert hasattr(chunk.choices[0], "prompt_token_ids")
|
||
assert hasattr(chunk.choices[0], "completion_token_ids")
|
||
if is_first_chunk:
|
||
is_first_chunk = False
|
||
assert isinstance(chunk.choices[0].prompt_token_ids, list)
|
||
assert chunk.choices[0].completion_token_ids is None
|
||
else:
|
||
assert chunk.choices[0].prompt_token_ids is None
|
||
assert isinstance(chunk.choices[0].completion_token_ids, list)
|
||
|
||
# disable return_token_ids
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"return_token_ids": False},
|
||
stream=True,
|
||
)
|
||
for chunk in response:
|
||
assert hasattr(chunk, "choices")
|
||
assert len(chunk.choices) > 0
|
||
assert hasattr(chunk.choices[0], "prompt_token_ids")
|
||
assert chunk.choices[0].prompt_token_ids is None
|
||
assert hasattr(chunk.choices[0], "completion_token_ids")
|
||
assert chunk.choices[0].completion_token_ids is None
|
||
|
||
|
||
def test_non_streaming_chat_with_prompt_token_ids(openai_client, capsys):
|
||
"""
|
||
Test prompt_token_ids option in non-streaming chat functionality with the local service
|
||
"""
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"prompt_token_ids": [5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937]},
|
||
stream=False,
|
||
)
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
assert hasattr(response, "usage")
|
||
assert hasattr(response.usage, "prompt_tokens")
|
||
assert response.usage.prompt_tokens == 9
|
||
|
||
|
||
def test_streaming_chat_with_prompt_token_ids(openai_client, capsys):
|
||
"""
|
||
Test prompt_token_ids option in streaming chat functionality with the local service
|
||
"""
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"prompt_token_ids": [5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937]},
|
||
stream=True,
|
||
stream_options={"include_usage": True},
|
||
)
|
||
for chunk in response:
|
||
assert hasattr(chunk, "choices")
|
||
assert hasattr(chunk, "usage")
|
||
if len(chunk.choices) > 0:
|
||
assert chunk.usage is None
|
||
else:
|
||
assert hasattr(chunk.usage, "prompt_tokens")
|
||
assert chunk.usage.prompt_tokens == 9
|
||
|
||
|
||
def test_non_streaming_completion_with_prompt_token_ids(openai_client, capsys):
|
||
"""
|
||
Test prompt_token_ids option in streaming completion functionality with the local service
|
||
"""
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="",
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"prompt_token_ids": [5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937]},
|
||
stream=False,
|
||
)
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
assert hasattr(response, "usage")
|
||
assert hasattr(response.usage, "prompt_tokens")
|
||
assert response.usage.prompt_tokens == 9
|
||
|
||
|
||
def test_streaming_completion_with_prompt_token_ids(openai_client, capsys):
|
||
"""
|
||
Test prompt_token_ids option in non-streaming completion functionality with the local service
|
||
"""
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="",
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"prompt_token_ids": [5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937]},
|
||
stream=True,
|
||
stream_options={"include_usage": True},
|
||
)
|
||
for chunk in response:
|
||
assert hasattr(chunk, "choices")
|
||
assert hasattr(chunk, "usage")
|
||
if len(chunk.choices) > 0:
|
||
assert chunk.usage is None
|
||
else:
|
||
assert hasattr(chunk.usage, "prompt_tokens")
|
||
assert chunk.usage.prompt_tokens == 9
|
||
|
||
|
||
def test_non_streaming_chat_completion_disable_chat_template(openai_client, capsys):
|
||
"""
|
||
Test disable_chat_template option in chat functionality with the local service.
|
||
"""
|
||
enabled_response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
max_tokens=10,
|
||
temperature=0.0,
|
||
top_p=0,
|
||
extra_body={"disable_chat_template": False},
|
||
stream=False,
|
||
)
|
||
assert hasattr(enabled_response, "choices")
|
||
assert len(enabled_response.choices) > 0
|
||
|
||
# from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer
|
||
# tokenizer = ErnieBotTokenizer.from_pretrained("PaddlePaddle/ERNIE-4.5-0.3B-Paddle", trust_remote_code=True)
|
||
# prompt = tokenizer.apply_chat_template([{"role": "user", "content": "Hello, how are you?"}], tokenize=False)
|
||
prompt = "<|begin_of_sentence|>User: Hello, how are you?\nAssistant: "
|
||
disabled_response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": prompt}],
|
||
max_tokens=10,
|
||
temperature=0,
|
||
top_p=0,
|
||
extra_body={"disable_chat_template": True},
|
||
stream=False,
|
||
)
|
||
assert hasattr(disabled_response, "choices")
|
||
assert len(disabled_response.choices) > 0
|
||
assert enabled_response.choices[0].message.content == disabled_response.choices[0].message.content
|
||
|
||
|
||
def test_non_streaming_chat_with_min_tokens(openai_client, capsys):
|
||
"""
|
||
Test min_tokens option in non-streaming chat functionality with the local service
|
||
"""
|
||
min_tokens = 1000
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
max_tokens=1010,
|
||
extra_body={"min_tokens": min_tokens},
|
||
stream=False,
|
||
)
|
||
assert hasattr(response, "usage")
|
||
assert hasattr(response.usage, "completion_tokens")
|
||
assert response.usage.completion_tokens >= min_tokens
|
||
|
||
|
||
def test_non_streaming_min_max_token_equals_one(openai_client, capsys):
|
||
"""
|
||
Test chat/completion when min_tokens equals max_tokens equals 1.
|
||
Verify it returns exactly one token.
|
||
"""
|
||
# Test non-streaming chat
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello"}],
|
||
max_tokens=1,
|
||
temperature=0.0,
|
||
stream=False,
|
||
)
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
assert hasattr(response.choices[0], "message")
|
||
assert hasattr(response.choices[0].message, "content")
|
||
# Verify usage shows exactly 1 completion token
|
||
assert hasattr(response, "usage")
|
||
assert response.usage.completion_tokens == 1
|
||
|
||
|
||
def test_non_streaming_chat_with_bad_words(openai_client, capsys):
|
||
"""
|
||
Test bad_words option in non-streaming chat functionality with the local service
|
||
"""
|
||
base_path = os.getenv("MODEL_PATH")
|
||
if base_path:
|
||
model_path = os.path.join(base_path, "ernie-4_5-21b-a3b-bf16-paddle")
|
||
else:
|
||
model_path = "./ernie-4_5-21b-a3b-bf16-paddle"
|
||
response_0 = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
top_p=0.0,
|
||
max_tokens=20,
|
||
stream=False,
|
||
extra_body={"return_token_ids": True},
|
||
)
|
||
|
||
assert hasattr(response_0, "choices")
|
||
assert len(response_0.choices) > 0
|
||
assert hasattr(response_0.choices[0], "message")
|
||
assert hasattr(response_0.choices[0].message, "completion_token_ids")
|
||
assert isinstance(response_0.choices[0].message.completion_token_ids, list)
|
||
|
||
from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer
|
||
|
||
tokenizer = ErnieBotTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||
output_tokens_0 = []
|
||
output_ids_0 = []
|
||
for ids in response_0.choices[0].message.completion_token_ids:
|
||
output_tokens_0.append(tokenizer.decode(ids))
|
||
output_ids_0.append(ids)
|
||
|
||
# add bad words
|
||
bad_tokens = output_tokens_0[6:10]
|
||
bad_token_ids = output_ids_0[6:10]
|
||
response_1 = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
top_p=0.0,
|
||
max_tokens=20,
|
||
extra_body={"bad_words": bad_tokens, "return_token_ids": True},
|
||
stream=False,
|
||
)
|
||
assert hasattr(response_1, "choices")
|
||
assert len(response_1.choices) > 0
|
||
assert hasattr(response_1.choices[0], "message")
|
||
assert hasattr(response_1.choices[0].message, "completion_token_ids")
|
||
assert isinstance(response_1.choices[0].message.completion_token_ids, list)
|
||
|
||
response_2 = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
top_p=0.0,
|
||
max_tokens=20,
|
||
extra_body={"bad_words_token_ids": bad_token_ids, "return_token_ids": True},
|
||
stream=False,
|
||
)
|
||
assert hasattr(response_2, "choices")
|
||
assert len(response_2.choices) > 0
|
||
assert hasattr(response_2.choices[0], "message")
|
||
assert hasattr(response_2.choices[0].message, "completion_token_ids")
|
||
assert isinstance(response_2.choices[0].message.completion_token_ids, list)
|
||
|
||
assert not any(ids in response_1.choices[0].message.completion_token_ids for ids in bad_token_ids)
|
||
assert not any(ids in response_2.choices[0].message.completion_token_ids for ids in bad_token_ids)
|
||
|
||
|
||
def test_streaming_chat_with_bad_words(openai_client, capsys):
|
||
"""
|
||
Test bad_words option in streaming chat functionality with the local service
|
||
"""
|
||
response_0 = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
top_p=0.0,
|
||
max_tokens=20,
|
||
stream=True,
|
||
extra_body={"return_token_ids": True},
|
||
)
|
||
output_tokens_0 = []
|
||
output_ids_0 = []
|
||
is_first_chunk = True
|
||
for chunk in response_0:
|
||
assert hasattr(chunk, "choices")
|
||
assert len(chunk.choices) > 0
|
||
assert hasattr(chunk.choices[0], "delta")
|
||
assert hasattr(chunk.choices[0].delta, "content")
|
||
assert hasattr(chunk.choices[0].delta, "completion_token_ids")
|
||
if is_first_chunk:
|
||
is_first_chunk = False
|
||
else:
|
||
assert isinstance(chunk.choices[0].delta.completion_token_ids, list)
|
||
output_tokens_0.append(chunk.choices[0].delta.content)
|
||
output_ids_0.extend(chunk.choices[0].delta.completion_token_ids)
|
||
|
||
# add bad words
|
||
bad_tokens = output_tokens_0[6:10]
|
||
bad_token_ids = output_ids_0[6:10]
|
||
response_1 = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
top_p=0.0,
|
||
max_tokens=20,
|
||
extra_body={"bad_words": bad_tokens, "return_token_ids": True},
|
||
stream=True,
|
||
)
|
||
output_tokens_1 = []
|
||
output_ids_1 = []
|
||
is_first_chunk = True
|
||
for chunk in response_1:
|
||
assert hasattr(chunk, "choices")
|
||
assert len(chunk.choices) > 0
|
||
assert hasattr(chunk.choices[0], "delta")
|
||
assert hasattr(chunk.choices[0].delta, "content")
|
||
assert hasattr(chunk.choices[0].delta, "completion_token_ids")
|
||
if is_first_chunk:
|
||
is_first_chunk = False
|
||
else:
|
||
assert isinstance(chunk.choices[0].delta.completion_token_ids, list)
|
||
output_tokens_1.append(chunk.choices[0].delta.content)
|
||
output_ids_1.extend(chunk.choices[0].delta.completion_token_ids)
|
||
|
||
response_2 = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||
temperature=1,
|
||
top_p=0.0,
|
||
max_tokens=20,
|
||
extra_body={"bad_words_token_ids": bad_token_ids, "return_token_ids": True},
|
||
stream=True,
|
||
)
|
||
output_tokens_2 = []
|
||
output_ids_2 = []
|
||
is_first_chunk = True
|
||
for chunk in response_2:
|
||
assert hasattr(chunk, "choices")
|
||
assert len(chunk.choices) > 0
|
||
assert hasattr(chunk.choices[0], "delta")
|
||
assert hasattr(chunk.choices[0].delta, "content")
|
||
assert hasattr(chunk.choices[0].delta, "completion_token_ids")
|
||
if is_first_chunk:
|
||
is_first_chunk = False
|
||
else:
|
||
assert isinstance(chunk.choices[0].delta.completion_token_ids, list)
|
||
output_tokens_2.append(chunk.choices[0].delta.content)
|
||
output_ids_2.extend(chunk.choices[0].delta.completion_token_ids)
|
||
|
||
assert not any(ids in output_ids_1 for ids in bad_token_ids)
|
||
assert not any(ids in output_ids_2 for ids in bad_token_ids)
|
||
|
||
|
||
def test_non_streaming_completion_with_bad_words(openai_client, capsys):
|
||
"""
|
||
Test bad_words option in non-streaming completion functionality with the local service
|
||
"""
|
||
base_path = os.getenv("MODEL_PATH")
|
||
if base_path:
|
||
model_path = os.path.join(base_path, "ernie-4_5-21b-a3b-bf16-paddle")
|
||
else:
|
||
model_path = "./ernie-4_5-21b-a3b-bf16-paddle"
|
||
|
||
response_0 = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
top_p=0.0,
|
||
max_tokens=20,
|
||
stream=False,
|
||
extra_body={"return_token_ids": True},
|
||
)
|
||
assert hasattr(response_0, "choices")
|
||
assert len(response_0.choices) > 0
|
||
assert hasattr(response_0.choices[0], "completion_token_ids")
|
||
assert isinstance(response_0.choices[0].completion_token_ids, list)
|
||
|
||
from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer
|
||
|
||
tokenizer = ErnieBotTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||
output_tokens_0 = []
|
||
output_ids_0 = []
|
||
for ids in response_0.choices[0].completion_token_ids:
|
||
output_tokens_0.append(tokenizer.decode(ids))
|
||
output_ids_0.append(ids)
|
||
|
||
# add bad words
|
||
bad_tokens = output_tokens_0[6:10]
|
||
bad_token_ids = output_ids_0[6:10]
|
||
response_1 = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
top_p=0.0,
|
||
max_tokens=20,
|
||
extra_body={"bad_words": bad_tokens, "return_token_ids": True},
|
||
stream=False,
|
||
)
|
||
assert hasattr(response_1, "choices")
|
||
assert len(response_1.choices) > 0
|
||
assert hasattr(response_1.choices[0], "completion_token_ids")
|
||
assert isinstance(response_1.choices[0].completion_token_ids, list)
|
||
|
||
response_2 = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
top_p=0.0,
|
||
max_tokens=20,
|
||
extra_body={"bad_words_token_ids": bad_token_ids, "return_token_ids": True},
|
||
stream=False,
|
||
)
|
||
assert hasattr(response_2, "choices")
|
||
assert len(response_2.choices) > 0
|
||
assert hasattr(response_2.choices[0], "completion_token_ids")
|
||
assert isinstance(response_2.choices[0].completion_token_ids, list)
|
||
|
||
assert not any(ids in response_1.choices[0].completion_token_ids for ids in bad_token_ids)
|
||
assert not any(ids in response_2.choices[0].completion_token_ids for ids in bad_token_ids)
|
||
|
||
|
||
def test_streaming_completion_with_bad_words(openai_client, capsys):
|
||
"""
|
||
Test bad_words option in streaming completion functionality with the local service
|
||
"""
|
||
response_0 = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
top_p=0.0,
|
||
max_tokens=20,
|
||
stream=True,
|
||
extra_body={"return_token_ids": True},
|
||
)
|
||
output_tokens_0 = []
|
||
output_ids_0 = []
|
||
is_first_chunk = True
|
||
for chunk in response_0:
|
||
if is_first_chunk:
|
||
is_first_chunk = False
|
||
else:
|
||
assert hasattr(chunk, "choices")
|
||
assert len(chunk.choices) > 0
|
||
assert hasattr(chunk.choices[0], "text")
|
||
assert hasattr(chunk.choices[0], "completion_token_ids")
|
||
output_tokens_0.append(chunk.choices[0].text)
|
||
output_ids_0.extend(chunk.choices[0].completion_token_ids)
|
||
|
||
# add bad words
|
||
bad_token_ids = output_ids_0[6:10]
|
||
bad_tokens = output_tokens_0[6:10]
|
||
response_1 = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
top_p=0.0,
|
||
max_tokens=20,
|
||
extra_body={"bad_words": bad_tokens, "return_token_ids": True},
|
||
stream=True,
|
||
)
|
||
output_tokens_1 = []
|
||
output_ids_1 = []
|
||
is_first_chunk = True
|
||
for chunk in response_1:
|
||
if is_first_chunk:
|
||
is_first_chunk = False
|
||
else:
|
||
assert hasattr(chunk, "choices")
|
||
assert len(chunk.choices) > 0
|
||
assert hasattr(chunk.choices[0], "text")
|
||
assert hasattr(chunk.choices[0], "completion_token_ids")
|
||
output_tokens_1.append(chunk.choices[0].text)
|
||
output_ids_1.extend(chunk.choices[0].completion_token_ids)
|
||
# add bad words token ids
|
||
response_2 = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
top_p=0.0,
|
||
max_tokens=20,
|
||
extra_body={"bad_words_token_ids": bad_token_ids, "return_token_ids": True},
|
||
stream=True,
|
||
)
|
||
output_tokens_2 = []
|
||
output_ids_2 = []
|
||
is_first_chunk = True
|
||
for chunk in response_2:
|
||
if is_first_chunk:
|
||
is_first_chunk = False
|
||
else:
|
||
assert hasattr(chunk, "choices")
|
||
assert len(chunk.choices) > 0
|
||
assert hasattr(chunk.choices[0], "text")
|
||
assert hasattr(chunk.choices[0], "completion_token_ids")
|
||
output_tokens_2.append(chunk.choices[0].text)
|
||
output_ids_2.extend(chunk.choices[0].completion_token_ids)
|
||
|
||
assert not any(ids in output_ids_1 for ids in bad_token_ids)
|
||
assert not any(ids in output_ids_2 for ids in bad_token_ids)
|
||
|
||
|
||
def test_profile_reset_block_num():
|
||
"""测试profile reset_block_num功能,与baseline diff不能超过5%"""
|
||
log_file = "./log/config.log"
|
||
baseline = 31446
|
||
|
||
if not os.path.exists(log_file):
|
||
pytest.fail(f"Log file not found: {log_file}")
|
||
|
||
with open(log_file, "r") as f:
|
||
log_lines = f.readlines()
|
||
|
||
target_line = None
|
||
for line in log_lines:
|
||
if "Reset block num" in line:
|
||
target_line = line.strip()
|
||
break
|
||
|
||
if target_line is None:
|
||
pytest.fail("日志中没有Reset block num信息")
|
||
|
||
match = re.search(r"total_block_num:(\d+)", target_line)
|
||
if not match:
|
||
pytest.fail(f"Failed to extract total_block_num from line: {target_line}")
|
||
|
||
try:
|
||
actual_value = int(match.group(1))
|
||
except ValueError:
|
||
pytest.fail(f"Invalid number format: {match.group(1)}")
|
||
|
||
lower_bound = baseline * (1 - 0.05)
|
||
upper_bound = baseline * (1 + 0.05)
|
||
print(f"Reset total_block_num: {actual_value}. baseline: {baseline}")
|
||
|
||
assert lower_bound <= actual_value <= upper_bound, (
|
||
f"Reset total_block_num {actual_value} 与 baseline {baseline} diff需要在5%以内"
|
||
f"Allowed range: [{lower_bound:.1f}, {upper_bound:.1f}]"
|
||
)
|