# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import shutil import signal import socket import subprocess import sys import time import openai import pytest import requests # Read ports from environment variables; use default values if not set FD_API_PORT = int(os.getenv("FD_API_PORT", 8188)) FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133)) FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233)) # List of ports to clean before and after tests PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT] def is_port_open(host: str, port: int, timeout=1.0): """ Check if a TCP port is open on the given host. Returns True if connection succeeds, False otherwise. """ try: with socket.create_connection((host, port), timeout): return True except Exception: return False def kill_process_on_port(port: int): """ Kill processes that are listening on the given port. Uses `lsof` to find process ids and sends SIGKILL. """ try: output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip() current_pid = os.getpid() parent_pid = os.getppid() for pid in output.splitlines(): pid = int(pid) if pid in (current_pid, parent_pid): print(f"Skip killing current process (pid={pid}) on port {port}") continue os.kill(pid, signal.SIGKILL) print(f"Killed process on port {port}, pid={pid}") except subprocess.CalledProcessError: pass def clean_ports(): """ Kill all processes occupying the ports listed in PORTS_TO_CLEAN. """ for port in PORTS_TO_CLEAN: kill_process_on_port(port) time.sleep(2) @pytest.fixture(scope="session", autouse=True) def setup_and_run_server(): """ Pytest fixture that runs once per test session: - Cleans ports before tests - Starts the API server as a subprocess - Waits for server port to open (up to 30 seconds) - Tears down server after all tests finish """ print("Pre-test port cleanup...") clean_ports() print("log dir clean ") if os.path.exists("log") and os.path.isdir("log"): shutil.rmtree("log") base_path = os.getenv("MODEL_PATH") if base_path: model_path = os.path.join(base_path, "ernie-4_5-21b-a3b-bf16-paddle") else: model_path = "./ernie-4_5-21b-a3b-bf16-paddle" log_path = "server.log" cmd = [ sys.executable, "-m", "fastdeploy.entrypoints.openai.api_server", "--model", model_path, "--port", str(FD_API_PORT), "--tensor-parallel-size", "1", "--engine-worker-queue-port", str(FD_ENGINE_QUEUE_PORT), "--metrics-port", str(FD_METRICS_PORT), "--max-model-len", "32768", "--max-num-seqs", "128", "--quantization", "wint4", "--use-cudagraph", "--graph-optimization-config", '{"cudagraph_capture_sizes": [1]}', ] # Start subprocess in new process group with open(log_path, "w") as logfile: process = subprocess.Popen( cmd, stdout=logfile, stderr=subprocess.STDOUT, start_new_session=True, # Enables killing full group via os.killpg ) # Wait up to 300 seconds for API server to be ready for _ in range(300): if is_port_open("127.0.0.1", FD_API_PORT): print(f"API server is up on port {FD_API_PORT}") break time.sleep(1) else: print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...") try: os.killpg(process.pid, signal.SIGTERM) except Exception as e: print(f"Failed to kill process group: {e}") raise RuntimeError(f"API server did not start on port {FD_API_PORT}") yield # Run tests print("\n===== Post-test server cleanup... =====") try: os.killpg(process.pid, signal.SIGTERM) print(f"API server (pid={process.pid}) terminated") except Exception as e: print(f"Failed to terminate API server: {e}") @pytest.fixture(scope="session") def api_url(request): """ Returns the API endpoint URL for chat completions. """ return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions" @pytest.fixture(scope="session") def metrics_url(request): """ Returns the metrics endpoint URL. """ return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics" @pytest.fixture def headers(): """ Returns common HTTP request headers. """ return {"Content-Type": "application/json"} @pytest.fixture def consistent_payload(): """ Returns a fixed payload for consistency testing, including a fixed random seed and temperature. """ return { "messages": [{"role": "user", "content": "用一句话介绍 PaddlePaddle"}], "temperature": 0.9, "top_p": 0, # fix top_p to reduce randomness "seed": 13, # fixed random seed } # ========================== # Helper function to calculate difference rate between two texts # ========================== def calculate_diff_rate(text1, text2): """ Calculate the difference rate between two strings based on the normalized Levenshtein edit distance. Returns a float in [0,1], where 0 means identical. """ if text1 == text2: return 0.0 len1, len2 = len(text1), len(text2) dp = [[0] * (len2 + 1) for _ in range(len1 + 1)] for i in range(len1 + 1): for j in range(len2 + 1): if i == 0 or j == 0: dp[i][j] = i + j elif text1[i - 1] == text2[j - 1]: dp[i][j] = dp[i - 1][j - 1] else: dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) edit_distance = dp[len1][len2] max_len = max(len1, len2) return edit_distance / max_len if max_len > 0 else 0.0 # ========================== # Consistency test for repeated runs with fixed payload # ========================== def test_consistency_between_runs(api_url, headers, consistent_payload): """ Test that two runs with the same fixed input produce similar outputs. """ # First request resp1 = requests.post(api_url, headers=headers, json=consistent_payload) assert resp1.status_code == 200 result1 = resp1.json() content1 = result1["choices"][0]["message"]["content"] # Second request resp2 = requests.post(api_url, headers=headers, json=consistent_payload) assert resp2.status_code == 200 result2 = resp2.json() content2 = result2["choices"][0]["message"]["content"] # Calculate difference rate diff_rate = calculate_diff_rate(content1, content2) # Verify that the difference rate is below the threshold assert diff_rate < 0.05, f"Output difference too large ({diff_rate:.4%})" # ========================== # OpenAI Client chat.completions Test # ========================== @pytest.fixture def openai_client(): ip = "0.0.0.0" service_http_port = str(FD_API_PORT) client = openai.Client( base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY", ) return client # Non-streaming test def test_non_streaming_chat(openai_client): """ Test non-streaming chat functionality with the local service """ response = openai_client.chat.completions.create( model="default", messages=[ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": "List 3 countries and their capitals."}, ], temperature=1, max_tokens=1024, stream=False, ) assert hasattr(response, "choices") assert len(response.choices) > 0 assert hasattr(response.choices[0], "message") assert hasattr(response.choices[0].message, "content") # Streaming test def test_streaming_chat(openai_client, capsys): """ Test streaming chat functionality with the local service """ response = openai_client.chat.completions.create( model="default", messages=[ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": "List 3 countries and their capitals."}, { "role": "assistant", "content": "China(Beijing), France(Paris), Australia(Canberra).", }, {"role": "user", "content": "OK, tell more."}, ], temperature=1, max_tokens=1024, stream=True, ) output = [] for chunk in response: if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"): output.append(chunk.choices[0].delta.content) assert len(output) > 2 # ========================== # OpenAI Client completions Test # ========================== def test_non_streaming(openai_client): """ Test non-streaming chat functionality with the local service """ response = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, max_tokens=1024, stream=False, ) # Assertions to check the response structure assert hasattr(response, "choices") assert len(response.choices) > 0 def test_streaming(openai_client, capsys): """ Test streaming functionality with the local service """ response = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, max_tokens=1024, stream=True, ) # Collect streaming output output = [] for chunk in response: output.append(chunk.choices[0].text) assert len(output) > 0 # ========================== # OpenAI Client additional chat/completions test # ========================== def test_non_streaming_with_stop_str(openai_client): """ Test non-streaming chat functionality with the local service """ response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, max_tokens=5, extra_body={"include_stop_str_in_output": True}, stream=False, ) # Assertions to check the response structure assert hasattr(response, "choices") assert len(response.choices) > 0 assert response.choices[0].message.content.endswith("") response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, max_tokens=5, extra_body={"include_stop_str_in_output": False}, stream=False, ) # Assertions to check the response structure assert hasattr(response, "choices") assert len(response.choices) > 0 assert not response.choices[0].message.content.endswith("") response = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, max_tokens=1024, stream=False, ) assert not response.choices[0].text.endswith("") response = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, max_tokens=1024, extra_body={"include_stop_str_in_output": True}, stream=False, ) assert response.choices[0].text.endswith("") def test_streaming_with_stop_str(openai_client): """ Test non-streaming chat functionality with the local service """ response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, max_tokens=5, extra_body={"include_stop_str_in_output": True}, stream=True, ) # Assertions to check the response structure last_token = "" for chunk in response: last_token = chunk.choices[0].delta.content assert last_token == "" response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, max_tokens=5, extra_body={"include_stop_str_in_output": False}, stream=True, ) # Assertions to check the response structure last_token = "" for chunk in response: last_token = chunk.choices[0].delta.content assert last_token != "" response_1 = openai_client.completions.create( model="default", prompt="Hello, how are you?", max_tokens=10, stream=True, ) last_token = "" for chunk in response_1: last_token = chunk.choices[0].text assert not last_token.endswith("") response_1 = openai_client.completions.create( model="default", prompt="Hello, how are you?", max_tokens=10, extra_body={"include_stop_str_in_output": True}, stream=True, ) last_token = "" for chunk in response_1: last_token = chunk.choices[0].text assert last_token.endswith("") def test_non_streaming_chat_with_return_token_ids(openai_client, capsys): """ Test return_token_ids option in non-streaming chat functionality with the local service """ # enable return_token_ids response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, max_tokens=5, extra_body={"return_token_ids": True}, stream=False, ) assert hasattr(response, "choices") assert len(response.choices) > 0 assert hasattr(response.choices[0], "message") assert hasattr(response.choices[0].message, "prompt_token_ids") assert isinstance(response.choices[0].message.prompt_token_ids, list) assert hasattr(response.choices[0].message, "completion_token_ids") assert isinstance(response.choices[0].message.completion_token_ids, list) # disable return_token_ids response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, max_tokens=5, extra_body={"return_token_ids": False}, stream=False, ) assert hasattr(response, "choices") assert len(response.choices) > 0 assert hasattr(response.choices[0], "message") assert hasattr(response.choices[0].message, "prompt_token_ids") assert response.choices[0].message.prompt_token_ids is None assert hasattr(response.choices[0].message, "completion_token_ids") assert response.choices[0].message.completion_token_ids is None def test_streaming_chat_with_return_token_ids(openai_client, capsys): """ Test return_token_ids option in streaming chat functionality with the local service """ # enable return_token_ids response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, max_tokens=5, extra_body={"return_token_ids": True}, stream=True, ) is_first_chunk = True for chunk in response: assert hasattr(chunk, "choices") assert len(chunk.choices) > 0 assert hasattr(chunk.choices[0], "delta") assert hasattr(chunk.choices[0].delta, "prompt_token_ids") assert hasattr(chunk.choices[0].delta, "completion_token_ids") if is_first_chunk: is_first_chunk = False assert isinstance(chunk.choices[0].delta.prompt_token_ids, list) assert chunk.choices[0].delta.completion_token_ids is None else: assert chunk.choices[0].delta.prompt_token_ids is None assert isinstance(chunk.choices[0].delta.completion_token_ids, list) # disable return_token_ids response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, max_tokens=5, extra_body={"return_token_ids": False}, stream=True, ) for chunk in response: assert hasattr(chunk, "choices") assert len(chunk.choices) > 0 assert hasattr(chunk.choices[0], "delta") assert hasattr(chunk.choices[0].delta, "prompt_token_ids") assert chunk.choices[0].delta.prompt_token_ids is None assert hasattr(chunk.choices[0].delta, "completion_token_ids") assert chunk.choices[0].delta.completion_token_ids is None def test_non_streaming_completion_with_return_token_ids(openai_client, capsys): """ Test return_token_ids option in non-streaming completion functionality with the local service """ # enable return_token_ids response = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, max_tokens=5, extra_body={"return_token_ids": True}, stream=False, ) assert hasattr(response, "choices") assert len(response.choices) > 0 assert hasattr(response.choices[0], "prompt_token_ids") assert isinstance(response.choices[0].prompt_token_ids, list) assert hasattr(response.choices[0], "completion_token_ids") assert isinstance(response.choices[0].completion_token_ids, list) # disable return_token_ids response = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, max_tokens=5, extra_body={"return_token_ids": False}, stream=False, ) assert hasattr(response, "choices") assert len(response.choices) > 0 assert hasattr(response.choices[0], "prompt_token_ids") assert response.choices[0].prompt_token_ids is None assert hasattr(response.choices[0], "completion_token_ids") assert response.choices[0].completion_token_ids is None def test_streaming_completion_with_return_token_ids(openai_client, capsys): """ Test return_token_ids option in streaming completion functionality with the local service """ # enable return_token_ids response = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, max_tokens=5, extra_body={"return_token_ids": True}, stream=True, ) is_first_chunk = True for chunk in response: assert hasattr(chunk, "choices") assert len(chunk.choices) > 0 assert hasattr(chunk.choices[0], "prompt_token_ids") assert hasattr(chunk.choices[0], "completion_token_ids") if is_first_chunk: is_first_chunk = False assert isinstance(chunk.choices[0].prompt_token_ids, list) assert chunk.choices[0].completion_token_ids is None else: assert chunk.choices[0].prompt_token_ids is None assert isinstance(chunk.choices[0].completion_token_ids, list) # disable return_token_ids response = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, max_tokens=5, extra_body={"return_token_ids": False}, stream=True, ) for chunk in response: assert hasattr(chunk, "choices") assert len(chunk.choices) > 0 assert hasattr(chunk.choices[0], "prompt_token_ids") assert chunk.choices[0].prompt_token_ids is None assert hasattr(chunk.choices[0], "completion_token_ids") assert chunk.choices[0].completion_token_ids is None def test_non_streaming_chat_with_prompt_token_ids(openai_client, capsys): """ Test prompt_token_ids option in non-streaming chat functionality with the local service """ response = openai_client.chat.completions.create( model="default", messages=[], temperature=1, max_tokens=5, extra_body={"prompt_token_ids": [5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937]}, stream=False, ) assert hasattr(response, "choices") assert len(response.choices) > 0 assert hasattr(response, "usage") assert hasattr(response.usage, "prompt_tokens") assert response.usage.prompt_tokens == 9 def test_streaming_chat_with_prompt_token_ids(openai_client, capsys): """ Test prompt_token_ids option in streaming chat functionality with the local service """ response = openai_client.chat.completions.create( model="default", messages=[], temperature=1, max_tokens=5, extra_body={"prompt_token_ids": [5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937]}, stream=True, stream_options={"include_usage": True}, ) for chunk in response: assert hasattr(chunk, "choices") assert hasattr(chunk, "usage") if len(chunk.choices) > 0: assert chunk.usage is None else: assert hasattr(chunk.usage, "prompt_tokens") assert chunk.usage.prompt_tokens == 9 def test_non_streaming_completion_with_prompt_token_ids(openai_client, capsys): """ Test prompt_token_ids option in streaming completion functionality with the local service """ response = openai_client.completions.create( model="default", prompt="", temperature=1, max_tokens=5, extra_body={"prompt_token_ids": [5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937]}, stream=False, ) assert hasattr(response, "choices") assert len(response.choices) > 0 assert hasattr(response, "usage") assert hasattr(response.usage, "prompt_tokens") assert response.usage.prompt_tokens == 9 def test_streaming_completion_with_prompt_token_ids(openai_client, capsys): """ Test prompt_token_ids option in non-streaming completion functionality with the local service """ response = openai_client.completions.create( model="default", prompt="", temperature=1, max_tokens=5, extra_body={"prompt_token_ids": [5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937]}, stream=True, stream_options={"include_usage": True}, ) for chunk in response: assert hasattr(chunk, "choices") assert hasattr(chunk, "usage") if len(chunk.choices) > 0: assert chunk.usage is None else: assert hasattr(chunk.usage, "prompt_tokens") assert chunk.usage.prompt_tokens == 9 def test_non_streaming_chat_completion_disable_chat_template(openai_client, capsys): """ Test disable_chat_template option in chat functionality with the local service. """ enabled_response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], max_tokens=10, temperature=0.0, top_p=0, extra_body={"disable_chat_template": False}, stream=False, ) assert hasattr(enabled_response, "choices") assert len(enabled_response.choices) > 0 # from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer # tokenizer = ErnieBotTokenizer.from_pretrained("PaddlePaddle/ERNIE-4.5-0.3B-Paddle", trust_remote_code=True) # prompt = tokenizer.apply_chat_template([{"role": "user", "content": "Hello, how are you?"}], tokenize=False) prompt = "<|begin_of_sentence|>User: Hello, how are you?\nAssistant: " disabled_response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": prompt}], max_tokens=10, temperature=0, top_p=0, extra_body={"disable_chat_template": True}, stream=False, ) assert hasattr(disabled_response, "choices") assert len(disabled_response.choices) > 0 assert enabled_response.choices[0].message.content == disabled_response.choices[0].message.content def test_non_streaming_chat_with_min_tokens(openai_client, capsys): """ Test min_tokens option in non-streaming chat functionality with the local service """ min_tokens = 1000 response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, max_tokens=1010, extra_body={"min_tokens": min_tokens}, stream=False, ) assert hasattr(response, "usage") assert hasattr(response.usage, "completion_tokens") assert response.usage.completion_tokens >= min_tokens def test_non_streaming_min_max_token_equals_one(openai_client, capsys): """ Test chat/completion when min_tokens equals max_tokens equals 1. Verify it returns exactly one token. """ # Test non-streaming chat response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello"}], max_tokens=1, temperature=0.0, stream=False, ) assert hasattr(response, "choices") assert len(response.choices) > 0 assert hasattr(response.choices[0], "message") assert hasattr(response.choices[0].message, "content") # Verify usage shows exactly 1 completion token assert hasattr(response, "usage") assert response.usage.completion_tokens == 1 def test_non_streaming_chat_with_bad_words(openai_client, capsys): """ Test bad_words option in non-streaming chat functionality with the local service """ base_path = os.getenv("MODEL_PATH") if base_path: model_path = os.path.join(base_path, "ernie-4_5-21b-a3b-bf16-paddle") else: model_path = "./ernie-4_5-21b-a3b-bf16-paddle" response_0 = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, top_p=0.0, max_tokens=20, stream=False, extra_body={"return_token_ids": True}, ) assert hasattr(response_0, "choices") assert len(response_0.choices) > 0 assert hasattr(response_0.choices[0], "message") assert hasattr(response_0.choices[0].message, "completion_token_ids") assert isinstance(response_0.choices[0].message.completion_token_ids, list) from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer tokenizer = ErnieBotTokenizer.from_pretrained(model_path, trust_remote_code=True) output_tokens_0 = [] output_ids_0 = [] for ids in response_0.choices[0].message.completion_token_ids: output_tokens_0.append(tokenizer.decode(ids)) output_ids_0.append(ids) # add bad words bad_tokens = output_tokens_0[6:10] bad_token_ids = output_ids_0[6:10] response_1 = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, top_p=0.0, max_tokens=20, extra_body={"bad_words": bad_tokens, "return_token_ids": True}, stream=False, ) assert hasattr(response_1, "choices") assert len(response_1.choices) > 0 assert hasattr(response_1.choices[0], "message") assert hasattr(response_1.choices[0].message, "completion_token_ids") assert isinstance(response_1.choices[0].message.completion_token_ids, list) response_2 = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, top_p=0.0, max_tokens=20, extra_body={"bad_words_token_ids": bad_token_ids, "return_token_ids": True}, stream=False, ) assert hasattr(response_2, "choices") assert len(response_2.choices) > 0 assert hasattr(response_2.choices[0], "message") assert hasattr(response_2.choices[0].message, "completion_token_ids") assert isinstance(response_2.choices[0].message.completion_token_ids, list) assert not any(ids in response_1.choices[0].message.completion_token_ids for ids in bad_token_ids) assert not any(ids in response_2.choices[0].message.completion_token_ids for ids in bad_token_ids) def test_streaming_chat_with_bad_words(openai_client, capsys): """ Test bad_words option in streaming chat functionality with the local service """ response_0 = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, top_p=0.0, max_tokens=20, stream=True, extra_body={"return_token_ids": True}, ) output_tokens_0 = [] output_ids_0 = [] is_first_chunk = True for chunk in response_0: assert hasattr(chunk, "choices") assert len(chunk.choices) > 0 assert hasattr(chunk.choices[0], "delta") assert hasattr(chunk.choices[0].delta, "content") assert hasattr(chunk.choices[0].delta, "completion_token_ids") if is_first_chunk: is_first_chunk = False else: assert isinstance(chunk.choices[0].delta.completion_token_ids, list) output_tokens_0.append(chunk.choices[0].delta.content) output_ids_0.extend(chunk.choices[0].delta.completion_token_ids) # add bad words bad_tokens = output_tokens_0[6:10] bad_token_ids = output_ids_0[6:10] response_1 = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, top_p=0.0, max_tokens=20, extra_body={"bad_words": bad_tokens, "return_token_ids": True}, stream=True, ) output_tokens_1 = [] output_ids_1 = [] is_first_chunk = True for chunk in response_1: assert hasattr(chunk, "choices") assert len(chunk.choices) > 0 assert hasattr(chunk.choices[0], "delta") assert hasattr(chunk.choices[0].delta, "content") assert hasattr(chunk.choices[0].delta, "completion_token_ids") if is_first_chunk: is_first_chunk = False else: assert isinstance(chunk.choices[0].delta.completion_token_ids, list) output_tokens_1.append(chunk.choices[0].delta.content) output_ids_1.extend(chunk.choices[0].delta.completion_token_ids) response_2 = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Hello, how are you?"}], temperature=1, top_p=0.0, max_tokens=20, extra_body={"bad_words_token_ids": bad_token_ids, "return_token_ids": True}, stream=True, ) output_tokens_2 = [] output_ids_2 = [] is_first_chunk = True for chunk in response_2: assert hasattr(chunk, "choices") assert len(chunk.choices) > 0 assert hasattr(chunk.choices[0], "delta") assert hasattr(chunk.choices[0].delta, "content") assert hasattr(chunk.choices[0].delta, "completion_token_ids") if is_first_chunk: is_first_chunk = False else: assert isinstance(chunk.choices[0].delta.completion_token_ids, list) output_tokens_2.append(chunk.choices[0].delta.content) output_ids_2.extend(chunk.choices[0].delta.completion_token_ids) assert not any(ids in output_ids_1 for ids in bad_token_ids) assert not any(ids in output_ids_2 for ids in bad_token_ids) def test_non_streaming_completion_with_bad_words(openai_client, capsys): """ Test bad_words option in non-streaming completion functionality with the local service """ base_path = os.getenv("MODEL_PATH") if base_path: model_path = os.path.join(base_path, "ernie-4_5-21b-a3b-bf16-paddle") else: model_path = "./ernie-4_5-21b-a3b-bf16-paddle" response_0 = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, top_p=0.0, max_tokens=20, stream=False, extra_body={"return_token_ids": True}, ) assert hasattr(response_0, "choices") assert len(response_0.choices) > 0 assert hasattr(response_0.choices[0], "completion_token_ids") assert isinstance(response_0.choices[0].completion_token_ids, list) from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer tokenizer = ErnieBotTokenizer.from_pretrained(model_path, trust_remote_code=True) output_tokens_0 = [] output_ids_0 = [] for ids in response_0.choices[0].completion_token_ids: output_tokens_0.append(tokenizer.decode(ids)) output_ids_0.append(ids) # add bad words bad_tokens = output_tokens_0[6:10] bad_token_ids = output_ids_0[6:10] response_1 = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, top_p=0.0, max_tokens=20, extra_body={"bad_words": bad_tokens, "return_token_ids": True}, stream=False, ) assert hasattr(response_1, "choices") assert len(response_1.choices) > 0 assert hasattr(response_1.choices[0], "completion_token_ids") assert isinstance(response_1.choices[0].completion_token_ids, list) response_2 = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, top_p=0.0, max_tokens=20, extra_body={"bad_words_token_ids": bad_token_ids, "return_token_ids": True}, stream=False, ) assert hasattr(response_2, "choices") assert len(response_2.choices) > 0 assert hasattr(response_2.choices[0], "completion_token_ids") assert isinstance(response_2.choices[0].completion_token_ids, list) assert not any(ids in response_1.choices[0].completion_token_ids for ids in bad_token_ids) assert not any(ids in response_2.choices[0].completion_token_ids for ids in bad_token_ids) def test_streaming_completion_with_bad_words(openai_client, capsys): """ Test bad_words option in streaming completion functionality with the local service """ response_0 = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, top_p=0.0, max_tokens=20, stream=True, extra_body={"return_token_ids": True}, ) output_tokens_0 = [] output_ids_0 = [] is_first_chunk = True for chunk in response_0: if is_first_chunk: is_first_chunk = False else: assert hasattr(chunk, "choices") assert len(chunk.choices) > 0 assert hasattr(chunk.choices[0], "text") assert hasattr(chunk.choices[0], "completion_token_ids") output_tokens_0.append(chunk.choices[0].text) output_ids_0.extend(chunk.choices[0].completion_token_ids) # add bad words bad_token_ids = output_ids_0[6:10] bad_tokens = output_tokens_0[6:10] response_1 = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, top_p=0.0, max_tokens=20, extra_body={"bad_words": bad_tokens, "return_token_ids": True}, stream=True, ) output_tokens_1 = [] output_ids_1 = [] is_first_chunk = True for chunk in response_1: if is_first_chunk: is_first_chunk = False else: assert hasattr(chunk, "choices") assert len(chunk.choices) > 0 assert hasattr(chunk.choices[0], "text") assert hasattr(chunk.choices[0], "completion_token_ids") output_tokens_1.append(chunk.choices[0].text) output_ids_1.extend(chunk.choices[0].completion_token_ids) # add bad words token ids response_2 = openai_client.completions.create( model="default", prompt="Hello, how are you?", temperature=1, top_p=0.0, max_tokens=20, extra_body={"bad_words_token_ids": bad_token_ids, "return_token_ids": True}, stream=True, ) output_tokens_2 = [] output_ids_2 = [] is_first_chunk = True for chunk in response_2: if is_first_chunk: is_first_chunk = False else: assert hasattr(chunk, "choices") assert len(chunk.choices) > 0 assert hasattr(chunk.choices[0], "text") assert hasattr(chunk.choices[0], "completion_token_ids") output_tokens_2.append(chunk.choices[0].text) output_ids_2.extend(chunk.choices[0].completion_token_ids) assert not any(ids in output_ids_1 for ids in bad_token_ids) assert not any(ids in output_ids_2 for ids in bad_token_ids) def test_profile_reset_block_num(): """测试profile reset_block_num功能,与baseline diff不能超过5%""" log_file = "./log/config.log" baseline = 31446 if not os.path.exists(log_file): pytest.fail(f"Log file not found: {log_file}") with open(log_file, "r") as f: log_lines = f.readlines() target_line = None for line in log_lines: if "Reset block num" in line: target_line = line.strip() break if target_line is None: pytest.fail("日志中没有Reset block num信息") match = re.search(r"total_block_num:(\d+)", target_line) if not match: pytest.fail(f"Failed to extract total_block_num from line: {target_line}") try: actual_value = int(match.group(1)) except ValueError: pytest.fail(f"Invalid number format: {match.group(1)}") lower_bound = baseline * (1 - 0.05) upper_bound = baseline * (1 + 0.05) print(f"Reset total_block_num: {actual_value}. baseline: {baseline}") assert lower_bound <= actual_value <= upper_bound, ( f"Reset total_block_num {actual_value} 与 baseline {baseline} diff需要在5%以内" f"Allowed range: [{lower_bound:.1f}, {upper_bound:.1f}]" )