mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
28 lines
2.0 KiB
Markdown
28 lines
2.0 KiB
Markdown
# YOLOv5Seg准备部署模型
|
||
|
||
- YOLOv5Seg v7.0部署模型实现来自[YOLOv5](https://github.com/ultralytics/yolov5/tree/v7.0),和[基于COCO的预训练模型](https://github.com/ultralytics/yolov5/releases/tag/v7.0)
|
||
- (1)[官方库](https://github.com/ultralytics/yolov5/releases/tag/v7.0)提供的*.onnx可直接进行部署;
|
||
- (2)开发者基于自己数据训练的YOLOv5Seg v7.0模型,可使用[YOLOv5](https://github.com/ultralytics/yolov5)中的`export.py`导出ONNX文件后,完成部署。
|
||
|
||
|
||
## 下载预训练ONNX模型
|
||
|
||
为了方便开发者的测试,下面提供了YOLOv5Seg导出的各系列模型,开发者可直接下载使用。(下表中模型的精度来源于源官方库)
|
||
| 模型 | 大小 | 精度 | 备注 |
|
||
|:---------------------------------------------------------------- |:----- |:----- |:----- |
|
||
| [YOLOv5n-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-seg.onnx) | 7.7MB | 27.6% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License |
|
||
| [YOLOv5s-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx) | 30MB | 37.6% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License |
|
||
| [YOLOv5m-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5m-seg.onnx) | 84MB | 45.0% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License |
|
||
| [YOLOv5l-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5l-seg.onnx) | 183MB | 49.0% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License |
|
||
| [YOLOv5x-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5x-seg.onnx) | 339MB | 50.7% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License |
|
||
|
||
|
||
## 详细部署文档
|
||
|
||
- [Python部署](python)
|
||
- [C++部署](cpp)
|
||
|
||
## 版本说明
|
||
|
||
- 本版本文档和代码基于[YOLOv5 v7.0](https://github.com/ultralytics/yolov5/tree/v7.0) 编写
|