mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
92 lines
3.3 KiB
Markdown
92 lines
3.3 KiB
Markdown
# 10分钟完成 ERNIE-4.5-0.3B-Paddle 模型部署
|
||
|
||
本文档讲解如何部署ERNIE-4.5-0.3B-Base-Paddle模型,在开始部署前,请确保你的硬件环境满足如下条件:
|
||
|
||
- GPU驱动 >= 535
|
||
- CUDA >= 12.3
|
||
- CUDNN >= 9.5
|
||
- Linux X86_64
|
||
- Python >= 3.10
|
||
- 运行模型满足最低硬件配置要求,参考[支持模型列表文档](../supported_models.md)
|
||
|
||
为了快速在各类硬件部署,本文档采用 ```ERNIE-4.5-0.3B-Base-Paddle``` 模型作为示例,可在大部分硬件上完成部署。
|
||
|
||
安装FastDeploy方式参考[安装文档](./installation/README.md)。
|
||
|
||
## 1. 启动服务
|
||
安装FastDeploy后,在终端执行如下命令,启动服务,其中启动命令配置方式参考[参数说明](../parameters.md)
|
||
|
||
```shell
|
||
export ENABLE_V1_KVCACHE_SCHEDULER=1
|
||
python -m fastdeploy.entrypoints.openai.api_server \
|
||
--model baidu/ERNIE-4.5-0.3B-Paddle \
|
||
--port 8180 \
|
||
--metrics-port 8181 \
|
||
--engine-worker-queue-port 8182 \
|
||
--max-model-len 32768 \
|
||
--max-num-seqs 32
|
||
```
|
||
|
||
>💡 注意:在 ```--model``` 指定的路径中,若当前目录下不存在该路径对应的子目录,则会尝试根据指定的模型名称(如 ```baidu/ERNIE-4.5-0.3B-Paddle```)查询AIStudio是否存在预置模型,若存在,则自动启动下载。默认的下载路径为:```~/xx```。关于模型自动下载的说明和配置参阅[模型下载](../supported_models.md)。
|
||
```--max-model-len``` 表示当前部署的服务所支持的最长Token数量。
|
||
```--max-num-seqs``` 表示当前部署的服务所支持的最大并发处理数量。
|
||
|
||
**相关文档**
|
||
|
||
- [服务部署配置](../online_serving/README.md)
|
||
- [服务监控metrics](../online_serving/metrics.md)
|
||
|
||
## 2. 用户发起服务请求
|
||
|
||
执行启动服务指令后,当终端打印如下信息,说明服务已经启动成功。
|
||
|
||
```
|
||
api_server.py[line:91] Launching metrics service at http://0.0.0.0:8181/metrics
|
||
api_server.py[line:94] Launching chat completion service at http://0.0.0.0:8180/v1/chat/completions
|
||
api_server.py[line:97] Launching completion service at http://0.0.0.0:8180/v1/completions
|
||
INFO: Started server process [13909]
|
||
INFO: Waiting for application startup.
|
||
INFO: Application startup complete.
|
||
INFO: Uvicorn running on http://0.0.0.0:8180 (Press CTRL+C to quit)
|
||
```
|
||
|
||
FastDeploy提供服务探活接口,用以判断服务的启动状态,执行如下命令返回 ```HTTP/1.1 200 OK``` 即表示服务启动成功。
|
||
|
||
```shell
|
||
curl -i http://0.0.0.0:8180/health
|
||
```
|
||
|
||
通过如下命令发起服务请求
|
||
|
||
```shell
|
||
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"messages": [
|
||
{"role": "user", "content": "把李白的静夜思改写为现代诗"}
|
||
]
|
||
}'
|
||
```
|
||
|
||
FastDeploy服务接口兼容OpenAI协议,可以通过如下Python代码发起服务请求。
|
||
|
||
```python
|
||
import openai
|
||
host = "0.0.0.0"
|
||
port = "8180"
|
||
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
|
||
|
||
response = client.chat.completions.create(
|
||
model="null",
|
||
messages=[
|
||
{"role": "system", "content": "I'm a helpful AI assistant."},
|
||
{"role": "user", "content": "把李白的静夜思改写为现代诗"},
|
||
],
|
||
stream=True,
|
||
)
|
||
for chunk in response:
|
||
if chunk.choices[0].delta:
|
||
print(chunk.choices[0].delta.content, end='')
|
||
print('\n')
|
||
```
|