Files
FastDeploy/docs/features/multi-node_deployment.md
ltd0924 5a84324798 [Doc] Add multinode deployment documents (#3417)
* Create multi-node_deployment.md

* Create multi-node_deployment.md

* Update mkdocs.yml
2025-08-15 10:37:04 +08:00

72 lines
2.6 KiB
Markdown

# Multi-Node Deployment
## Overview
Multi-node deployment addresses scenarios where a single machine's GPU memory is insufficient to support deployment of large models by enabling tensor parallelism across multiple machines.
## Environment Preparation
#### Network Requirements
1. All nodes must be within the same local network
2. Ensure bidirectional connectivity between all nodes (test using `ping` and `nc -zv`)
#### Software Requirements
1. Install the same version of FastDeploy on all nodes
2. [Recommended] Install and configure MPI (OpenMPI or MPICH)
## Tensor Parallel Deployment
### Recommended Launch Method
We recommend using mpirun for one-command startup without manually starting each node.
### Usage Instructions
1. Execute the same command on all machines
2. The IP order in the `ips` parameter determines the node startup sequence
3. The first IP will be designated as the master node
4. Ensure all nodes can resolve each other's hostnames
* Online inference startup example:
```shell
python -m fastdeploy.entrypoints.openai.api_server \
--model baidu/ERNIE-4.5-300B-A47B-Paddle \
--port 8180 \
--metrics-port 8181 \
--engine-worker-queue-port 8182 \
--max-model-len 32768 \
--max-num-seqs 32 \
--tensor-parallel-size 16 \
--ips 192.168.1.101,192.168.1.102
```
* Offline startup example:
```python
from fastdeploy.engine.sampling_params import SamplingParams
from fastdeploy.entrypoints.llm import LLM
model_name_or_path = "baidu/ERNIE-4.5-300B-A47B-Paddle"
sampling_params = SamplingParams(temperature=0.1, max_tokens=30)
llm = LLM(model=model_name_or_path, tensor_parallel_size=16, ips="192.168.1.101,192.168.1.102")
if llm._check_master():
output = llm.generate(prompts="Who are you?", use_tqdm=True, sampling_params=sampling_params)
print(output)
```
* Notes:
- Only the master node can receive completion requests
- Always send requests to the master node (the first IP in the ips list)
- The master node will distribute workloads across all nodes
### Parameter Description
#### `ips` Parameter
- **Type**: `string`
- **Format**: Comma-separated IPv4 addresses
- **Description**: Specifies the IP addresses of all nodes in the deployment group
- **Required**: Only for multi-node deployments
- **Example**: `"192.168.1.101,192.168.1.102,192.168.1.103"`
#### `tensor_parallel_size` Parameter
- **Type**: `integer`
- **Description**: Total number of GPUs across all nodes
- **Required**: Yes
- **Example**: For 2 nodes with 8 GPUs each, set to 16