mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
160 lines
5.5 KiB
Plaintext
160 lines
5.5 KiB
Plaintext
// adapted from: https://github.com/vllm-project/vllm/blob/118ff921118cc81061a2af865a1e13840ceb6792/csrc/quantization/cutlass_w8a8/c3x/cutlass_gemm_caller.cuh
|
|
|
|
#pragma once
|
|
|
|
#include "cuda.h"
|
|
#include "helper.h"
|
|
#include <cmath>
|
|
#include <cub/cub.cuh>
|
|
#include <cuda_runtime.h>
|
|
|
|
namespace fastdeploy {
|
|
|
|
// Vectorization containers
|
|
template <typename scalar_t> struct __align__(8) vec4_t {
|
|
scalar_t x;
|
|
scalar_t y;
|
|
scalar_t z;
|
|
scalar_t w;
|
|
};
|
|
|
|
template <typename quant_type_t> struct __align__(4) q8x4_t {
|
|
static_assert(std::is_same_v<quant_type_t, int8_t> ||
|
|
std::is_same_v<quant_type_t, phi::dtype::float8_e4m3fn>);
|
|
quant_type_t x;
|
|
quant_type_t y;
|
|
quant_type_t z;
|
|
quant_type_t w;
|
|
};
|
|
|
|
__device__ __forceinline__ float atomicMaxFloat(float *addr, float value) {
|
|
float old;
|
|
old = (value >= 0)
|
|
? __int_as_float(atomicMax((int *)addr, __float_as_int(value)))
|
|
: __uint_as_float(
|
|
atomicMin((unsigned int *)addr, __float_as_uint(value)));
|
|
|
|
return old;
|
|
}
|
|
|
|
template <bool is_scale_inverted, typename fp8_type>
|
|
__device__ __forceinline__ fp8_type scaled_fp8_conversion(float const val,
|
|
float const scale) {
|
|
float x = 0.0f;
|
|
if constexpr (is_scale_inverted) {
|
|
x = val * scale;
|
|
} else {
|
|
x = val / scale;
|
|
}
|
|
|
|
float r = fmax(-448, fmin(x, 448));
|
|
return static_cast<fp8_type>(r);
|
|
}
|
|
|
|
// Compute the absolute maximum m of the input tensor and store
|
|
// m / float8_e4m3::max() in *scale. Each thread block performs a
|
|
// reduction tree and the memory in scale is atomically updated.
|
|
// So to get the right answer, *scale needs to be initialized to
|
|
// a value <= 0.0 and we need to wait for all thread blocks to
|
|
// finish before consuming *scale.
|
|
template <typename scalar_t, typename fp8_type>
|
|
__global__ void segmented_max_reduction(float *__restrict__ scale,
|
|
const scalar_t *__restrict__ input,
|
|
int64_t num_elems) {
|
|
__shared__ float cache[1024];
|
|
int64_t i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
// First store maximum for all values processes by
|
|
// the current thread in cache[threadIdx.x]
|
|
float tmp = 0.0f;
|
|
while (i < num_elems) {
|
|
float x = static_cast<float>(input[i]);
|
|
tmp = fmax(tmp, fabs(x));
|
|
i += blockDim.x * gridDim.x;
|
|
}
|
|
cache[threadIdx.x] = tmp;
|
|
|
|
__syncthreads();
|
|
|
|
// Now perform parallel reduction within the thread block
|
|
int ib = blockDim.x / 2;
|
|
while (ib != 0) {
|
|
if (threadIdx.x < ib && cache[threadIdx.x + ib] > cache[threadIdx.x]) {
|
|
cache[threadIdx.x] = cache[threadIdx.x + ib];
|
|
}
|
|
__syncthreads();
|
|
ib /= 2;
|
|
}
|
|
// Finally, since cache[0] contains the maximum for this thread block,
|
|
// atomically write the max to the target location
|
|
if (threadIdx.x == 0) {
|
|
atomicMaxFloat(scale, cache[0] / 448.f);
|
|
}
|
|
}
|
|
|
|
template <typename scalar_t>
|
|
__device__ float thread_max_vec(scalar_t const *__restrict__ input,
|
|
int64_t const num_elems, int const tid,
|
|
int const step) {
|
|
// Vectorized input/output to better utilize memory bandwidth.
|
|
vec4_t<scalar_t> const *vectorized_in =
|
|
reinterpret_cast<vec4_t<scalar_t> const *>(input);
|
|
|
|
int64_t const num_vec_elems = num_elems >> 2;
|
|
float absmax_val = 0.0f;
|
|
|
|
#pragma unroll 4
|
|
for (int64_t i = tid; i < num_vec_elems; i += step) {
|
|
vec4_t<scalar_t> in_vec = vectorized_in[i];
|
|
absmax_val = max(absmax_val, fabs(static_cast<float>(in_vec.x)));
|
|
absmax_val = max(absmax_val, fabs(static_cast<float>(in_vec.y)));
|
|
absmax_val = max(absmax_val, fabs(static_cast<float>(in_vec.z)));
|
|
absmax_val = max(absmax_val, fabs(static_cast<float>(in_vec.w)));
|
|
}
|
|
|
|
// Handle the remaining elements if num_elems is not divisible by 4
|
|
for (int64_t i = num_vec_elems * 4 + tid; i < num_elems; i += step) {
|
|
absmax_val = max(absmax_val, fabs(static_cast<float>(input[i])));
|
|
}
|
|
|
|
return absmax_val;
|
|
}
|
|
|
|
template <typename scalar_t, bool is_scale_inverted, typename fp8_type>
|
|
__device__ void scaled_fp8_conversion_vec(fp8_type *__restrict__ out,
|
|
scalar_t const *__restrict__ input,
|
|
float const scale,
|
|
int64_t const num_elems,
|
|
int const tid, int const step) {
|
|
using float8x4_t = q8x4_t<fp8_type>;
|
|
// Vectorized input/output to better utilize memory bandwidth.
|
|
auto const *vectorized_in = reinterpret_cast<vec4_t<scalar_t> const *>(input);
|
|
auto *vectorized_out = reinterpret_cast<float8x4_t *>(out);
|
|
|
|
int64_t const num_vec_elems = num_elems >> 2;
|
|
|
|
#pragma unroll 4
|
|
for (int64_t i = tid; i < num_vec_elems; i += step) {
|
|
vec4_t<scalar_t> in_vec = vectorized_in[i];
|
|
float8x4_t out_vec;
|
|
|
|
out_vec.x = scaled_fp8_conversion<is_scale_inverted, fp8_type>(
|
|
static_cast<float>(in_vec.x), scale);
|
|
out_vec.y = scaled_fp8_conversion<is_scale_inverted, fp8_type>(
|
|
static_cast<float>(in_vec.y), scale);
|
|
out_vec.z = scaled_fp8_conversion<is_scale_inverted, fp8_type>(
|
|
static_cast<float>(in_vec.z), scale);
|
|
out_vec.w = scaled_fp8_conversion<is_scale_inverted, fp8_type>(
|
|
static_cast<float>(in_vec.w), scale);
|
|
vectorized_out[i] = out_vec;
|
|
}
|
|
|
|
// Handle the remaining elements if num_elems is not divisible by 4
|
|
for (int64_t i = num_vec_elems * 4 + tid; i < num_elems; i += step) {
|
|
out[i] = scaled_fp8_conversion<is_scale_inverted, fp8_type>(
|
|
static_cast<float>(input[i]), scale);
|
|
}
|
|
}
|
|
|
|
} // namespace fastdeploy
|