// adapted from: https://github.com/vllm-project/vllm/blob/118ff921118cc81061a2af865a1e13840ceb6792/csrc/quantization/cutlass_w8a8/c3x/cutlass_gemm_caller.cuh #pragma once #include "cuda.h" #include "helper.h" #include #include #include namespace fastdeploy { // Vectorization containers template struct __align__(8) vec4_t { scalar_t x; scalar_t y; scalar_t z; scalar_t w; }; template struct __align__(4) q8x4_t { static_assert(std::is_same_v || std::is_same_v); quant_type_t x; quant_type_t y; quant_type_t z; quant_type_t w; }; __device__ __forceinline__ float atomicMaxFloat(float *addr, float value) { float old; old = (value >= 0) ? __int_as_float(atomicMax((int *)addr, __float_as_int(value))) : __uint_as_float( atomicMin((unsigned int *)addr, __float_as_uint(value))); return old; } template __device__ __forceinline__ fp8_type scaled_fp8_conversion(float const val, float const scale) { float x = 0.0f; if constexpr (is_scale_inverted) { x = val * scale; } else { x = val / scale; } float r = fmax(-448, fmin(x, 448)); return static_cast(r); } // Compute the absolute maximum m of the input tensor and store // m / float8_e4m3::max() in *scale. Each thread block performs a // reduction tree and the memory in scale is atomically updated. // So to get the right answer, *scale needs to be initialized to // a value <= 0.0 and we need to wait for all thread blocks to // finish before consuming *scale. template __global__ void segmented_max_reduction(float *__restrict__ scale, const scalar_t *__restrict__ input, int64_t num_elems) { __shared__ float cache[1024]; int64_t i = blockDim.x * blockIdx.x + threadIdx.x; // First store maximum for all values processes by // the current thread in cache[threadIdx.x] float tmp = 0.0f; while (i < num_elems) { float x = static_cast(input[i]); tmp = fmax(tmp, fabs(x)); i += blockDim.x * gridDim.x; } cache[threadIdx.x] = tmp; __syncthreads(); // Now perform parallel reduction within the thread block int ib = blockDim.x / 2; while (ib != 0) { if (threadIdx.x < ib && cache[threadIdx.x + ib] > cache[threadIdx.x]) { cache[threadIdx.x] = cache[threadIdx.x + ib]; } __syncthreads(); ib /= 2; } // Finally, since cache[0] contains the maximum for this thread block, // atomically write the max to the target location if (threadIdx.x == 0) { atomicMaxFloat(scale, cache[0] / 448.f); } } template __device__ float thread_max_vec(scalar_t const *__restrict__ input, int64_t const num_elems, int const tid, int const step) { // Vectorized input/output to better utilize memory bandwidth. vec4_t const *vectorized_in = reinterpret_cast const *>(input); int64_t const num_vec_elems = num_elems >> 2; float absmax_val = 0.0f; #pragma unroll 4 for (int64_t i = tid; i < num_vec_elems; i += step) { vec4_t in_vec = vectorized_in[i]; absmax_val = max(absmax_val, fabs(static_cast(in_vec.x))); absmax_val = max(absmax_val, fabs(static_cast(in_vec.y))); absmax_val = max(absmax_val, fabs(static_cast(in_vec.z))); absmax_val = max(absmax_val, fabs(static_cast(in_vec.w))); } // Handle the remaining elements if num_elems is not divisible by 4 for (int64_t i = num_vec_elems * 4 + tid; i < num_elems; i += step) { absmax_val = max(absmax_val, fabs(static_cast(input[i]))); } return absmax_val; } template __device__ void scaled_fp8_conversion_vec(fp8_type *__restrict__ out, scalar_t const *__restrict__ input, float const scale, int64_t const num_elems, int const tid, int const step) { using float8x4_t = q8x4_t; // Vectorized input/output to better utilize memory bandwidth. auto const *vectorized_in = reinterpret_cast const *>(input); auto *vectorized_out = reinterpret_cast(out); int64_t const num_vec_elems = num_elems >> 2; #pragma unroll 4 for (int64_t i = tid; i < num_vec_elems; i += step) { vec4_t in_vec = vectorized_in[i]; float8x4_t out_vec; out_vec.x = scaled_fp8_conversion( static_cast(in_vec.x), scale); out_vec.y = scaled_fp8_conversion( static_cast(in_vec.y), scale); out_vec.z = scaled_fp8_conversion( static_cast(in_vec.z), scale); out_vec.w = scaled_fp8_conversion( static_cast(in_vec.w), scale); vectorized_out[i] = out_vec; } // Handle the remaining elements if num_elems is not divisible by 4 for (int64_t i = num_vec_elems * 4 + tid; i < num_elems; i += step) { out[i] = scaled_fp8_conversion( static_cast(input[i]), scale); } } } // namespace fastdeploy