mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 08:16:42 +08:00
236 lines
9.0 KiB
Plaintext
236 lines
9.0 KiB
Plaintext
// adapted from: https://github.com/vllm-project/vllm/blob/118ff921118cc81061a2af865a1e13840ceb6792/csrc/quantization/cutlass_w8a8/c3x/cutlass_gemm_caller.cuh
|
|
|
|
|
|
#include "quantization/common.cuh"
|
|
|
|
namespace fastdeploy {
|
|
|
|
template <typename scalar_t, typename fp8_type>
|
|
__global__ void scaled_fp8_quant_kernel(fp8_type *__restrict__ out,
|
|
const scalar_t *__restrict__ input,
|
|
const float *__restrict__ scale,
|
|
int64_t num_elems) {
|
|
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
// Invert the scale so that we can use multiplications to avoid expensive
|
|
// division.
|
|
const float inverted_scale = 1.0f / (*scale);
|
|
scaled_fp8_conversion_vec<scalar_t, true>(
|
|
out, input, inverted_scale, num_elems, tid, blockDim.x * gridDim.x);
|
|
}
|
|
|
|
template <typename scalar_t, typename fp8_type>
|
|
__global__ void dynamic_per_token_scaled_fp8_quant_kernel(
|
|
fp8_type *__restrict__ out, float *__restrict__ scale,
|
|
scalar_t const *__restrict__ input, float scale_ub, const int hidden_size) {
|
|
int const tid = threadIdx.x;
|
|
int const token_idx = blockIdx.x;
|
|
|
|
// Use int64 to avoid overflowing an int32 when calculating this offset
|
|
int64_t offset = static_cast<int64_t>(token_idx) * hidden_size;
|
|
scalar_t const *__restrict__ token_input = &input[offset];
|
|
fp8_type *__restrict__ token_output = &out[offset];
|
|
|
|
// For vectorization, token_input and token_output pointers need to be
|
|
// aligned at 8-byte and 4-byte addresses respectively.
|
|
bool const can_vectorize = hidden_size % 4 == 0;
|
|
|
|
float absmax_val = 0.0f;
|
|
if (can_vectorize) {
|
|
absmax_val = thread_max_vec(token_input, hidden_size, tid, blockDim.x);
|
|
} else {
|
|
for (int i = tid; i < hidden_size; i += blockDim.x) {
|
|
float const x = static_cast<float>(token_input[i]);
|
|
absmax_val = max(absmax_val, fabs(x));
|
|
}
|
|
}
|
|
|
|
using BlockReduce = cub::BlockReduce<float, 1024>;
|
|
__shared__ typename BlockReduce::TempStorage reduceStorage;
|
|
float const block_absmax_val_maybe =
|
|
BlockReduce(reduceStorage).Reduce(absmax_val, cub::Max{}, blockDim.x);
|
|
__shared__ float token_scale;
|
|
if (tid == 0) {
|
|
if (scale_ub > 0) {
|
|
token_scale = min(block_absmax_val_maybe, scale_ub);
|
|
} else {
|
|
token_scale = block_absmax_val_maybe;
|
|
}
|
|
// token scale computation
|
|
// token_scale = max(token_scale / 448.f,
|
|
// min_scaling_factor<fp8_type>::val());
|
|
token_scale = token_scale / 448.f;
|
|
scale[token_idx] = token_scale;
|
|
}
|
|
__syncthreads();
|
|
|
|
// Note that we don't use inverted scales so we can match FBGemm impl.
|
|
if (can_vectorize) {
|
|
scaled_fp8_conversion_vec<scalar_t, false>(
|
|
token_output, token_input, token_scale, hidden_size, tid, blockDim.x);
|
|
} else {
|
|
for (int i = tid; i < hidden_size; i += blockDim.x) {
|
|
token_output[i] = scaled_fp8_conversion<false, fp8_type>(
|
|
static_cast<float>(token_input[i]), token_scale);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace fastdeploy
|
|
|
|
void StaticScaledFp8Quant(paddle::Tensor &out, // [..., d]
|
|
paddle::Tensor const &input, // [..., d]
|
|
paddle::Tensor const &scale) // [1]
|
|
{
|
|
PD_CHECK(out.dtype() == paddle::DataType::FLOAT8_E4M3FN);
|
|
using fp8_t = phi::dtype::float8_e4m3fn;
|
|
auto rank = input.dims().size();
|
|
int64_t num_tokens = input.numel() / input.dims()[rank - 1];
|
|
int64_t num_elems = input.numel();
|
|
dim3 grid(num_tokens);
|
|
dim3 block(1024);
|
|
|
|
cudaStream_t stream = input.stream();
|
|
|
|
switch (input.dtype()) {
|
|
case paddle::DataType::FLOAT32: {
|
|
using scalar_t = float;
|
|
fastdeploy::scaled_fp8_quant_kernel<scalar_t, fp8_t>
|
|
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), input.data<scalar_t>(),
|
|
scale.data<float>(), num_elems);
|
|
break;
|
|
}
|
|
case paddle::DataType::FLOAT16: {
|
|
using scalar_t = phi::dtype::float16;
|
|
fastdeploy::scaled_fp8_quant_kernel<scalar_t, fp8_t>
|
|
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), input.data<scalar_t>(),
|
|
scale.data<float>(), num_elems);
|
|
break;
|
|
}
|
|
case paddle::DataType::BFLOAT16: {
|
|
using scalar_t = phi::dtype::bfloat16;
|
|
fastdeploy::scaled_fp8_quant_kernel<scalar_t, fp8_t>
|
|
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), input.data<scalar_t>(),
|
|
scale.data<float>(), num_elems);
|
|
break;
|
|
}
|
|
default:
|
|
PD_THROW("Only supported attr of input type in [fp32, fp16, bf16].");
|
|
}
|
|
}
|
|
|
|
void DynamicScaledFp8Quant(paddle::Tensor &out, // [..., d]
|
|
paddle::Tensor const &input, // [..., d]
|
|
paddle::Tensor &scale) // [1]
|
|
{
|
|
PD_CHECK(out.dtype() == paddle::DataType::FLOAT8_E4M3FN);
|
|
using fp8_t = phi::dtype::float8_e4m3fn;
|
|
auto rank = input.dims().size();
|
|
int64_t num_tokens = input.numel() / input.dims()[rank - 1];
|
|
int64_t num_elems = input.numel();
|
|
dim3 grid(num_tokens);
|
|
dim3 block(1024);
|
|
|
|
cudaStream_t stream = input.stream();
|
|
|
|
switch (input.dtype()) {
|
|
case paddle::DataType::FLOAT32: {
|
|
using scalar_t = float;
|
|
fastdeploy::segmented_max_reduction<scalar_t, fp8_t>
|
|
<<<grid, block, 0, stream>>>(scale.data<float>(),
|
|
input.data<scalar_t>(), num_elems);
|
|
fastdeploy::scaled_fp8_quant_kernel<scalar_t, fp8_t>
|
|
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), input.data<scalar_t>(),
|
|
scale.data<float>(), num_elems);
|
|
break;
|
|
}
|
|
case paddle::DataType::FLOAT16: {
|
|
using scalar_t = phi::dtype::float16;
|
|
fastdeploy::segmented_max_reduction<scalar_t, fp8_t>
|
|
<<<grid, block, 0, stream>>>(scale.data<float>(),
|
|
input.data<scalar_t>(), num_elems);
|
|
fastdeploy::scaled_fp8_quant_kernel<scalar_t, fp8_t>
|
|
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), input.data<scalar_t>(),
|
|
scale.data<float>(), num_elems);
|
|
break;
|
|
}
|
|
case paddle::DataType::BFLOAT16: {
|
|
using scalar_t = phi::dtype::bfloat16;
|
|
fastdeploy::segmented_max_reduction<scalar_t, fp8_t>
|
|
<<<grid, block, 0, stream>>>(scale.data<float>(),
|
|
input.data<scalar_t>(), num_elems);
|
|
fastdeploy::scaled_fp8_quant_kernel<scalar_t, fp8_t>
|
|
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), input.data<scalar_t>(),
|
|
scale.data<float>(), num_elems);
|
|
break;
|
|
}
|
|
default:
|
|
PD_THROW("Only supported attr of input type in [fp32, fp16, bf16].");
|
|
}
|
|
}
|
|
|
|
void DynamicPerTokenScaledFp8Quant(paddle::Tensor &out, // [..., d]
|
|
paddle::Tensor const &input, // [..., d]
|
|
paddle::Tensor &scales, float scale_ub) {
|
|
PD_CHECK(input.is_contiguous());
|
|
PD_CHECK(out.is_contiguous());
|
|
PD_CHECK(out.dtype() == paddle::DataType::FLOAT8_E4M3FN);
|
|
using fp8_t = phi::dtype::float8_e4m3fn;
|
|
auto rank = input.dims().size();
|
|
int const hidden_size = input.dims()[rank - 1];
|
|
int const num_tokens = input.numel() / hidden_size;
|
|
dim3 const grid(num_tokens);
|
|
dim3 const block(std::min(hidden_size, 1024));
|
|
|
|
cudaStream_t stream = input.stream();
|
|
|
|
switch (input.dtype()) {
|
|
case paddle::DataType::FLOAT32: {
|
|
using scalar_t = float;
|
|
fastdeploy::dynamic_per_token_scaled_fp8_quant_kernel<scalar_t, fp8_t>
|
|
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), scales.data<float>(),
|
|
input.data<scalar_t>(), scale_ub,
|
|
hidden_size);
|
|
break;
|
|
}
|
|
case paddle::DataType::FLOAT16: {
|
|
using scalar_t = phi::dtype::float16;
|
|
fastdeploy::dynamic_per_token_scaled_fp8_quant_kernel<scalar_t, fp8_t>
|
|
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), scales.data<float>(),
|
|
input.data<scalar_t>(), scale_ub,
|
|
hidden_size);
|
|
break;
|
|
}
|
|
case paddle::DataType::BFLOAT16: {
|
|
using scalar_t = phi::dtype::bfloat16;
|
|
fastdeploy::dynamic_per_token_scaled_fp8_quant_kernel<scalar_t, fp8_t>
|
|
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), scales.data<float>(),
|
|
input.data<scalar_t>(), scale_ub,
|
|
hidden_size);
|
|
break;
|
|
}
|
|
default:
|
|
PD_THROW("Only supported attr of input type in [fp32, fp16, bf16].");
|
|
}
|
|
}
|
|
|
|
PD_BUILD_STATIC_OP(static_scaled_fp8_quant)
|
|
.Inputs({"out", "input", "scale"})
|
|
.Outputs({"out_q"})
|
|
.SetInplaceMap({{"out", "out_q"}})
|
|
.SetKernelFn(PD_KERNEL(StaticScaledFp8Quant));
|
|
|
|
PD_BUILD_STATIC_OP(dynamic_scaled_fp8_quant)
|
|
.Inputs({"out", "input", "scale"})
|
|
.Outputs({"out_q", "out_scale"})
|
|
.SetInplaceMap({{"out", "out_q"},
|
|
{"scale", "out_scale"}})
|
|
.SetKernelFn(PD_KERNEL(DynamicScaledFp8Quant));
|
|
|
|
PD_BUILD_STATIC_OP(dynamic_per_token_scaled_fp8_quant)
|
|
.Inputs({"out", "input", "scale"})
|
|
.Attrs({"scale_ub: float"})
|
|
.Outputs({"out_q"})
|
|
.SetInplaceMap({{"out", "out_q"}})
|
|
.SetKernelFn(PD_KERNEL(DynamicPerTokenScaledFp8Quant));
|