// adapted from: https://github.com/vllm-project/vllm/blob/118ff921118cc81061a2af865a1e13840ceb6792/csrc/quantization/cutlass_w8a8/c3x/cutlass_gemm_caller.cuh #include "quantization/common.cuh" namespace fastdeploy { template __global__ void scaled_fp8_quant_kernel(fp8_type *__restrict__ out, const scalar_t *__restrict__ input, const float *__restrict__ scale, int64_t num_elems) { int tid = blockDim.x * blockIdx.x + threadIdx.x; // Invert the scale so that we can use multiplications to avoid expensive // division. const float inverted_scale = 1.0f / (*scale); scaled_fp8_conversion_vec( out, input, inverted_scale, num_elems, tid, blockDim.x * gridDim.x); } template __global__ void dynamic_per_token_scaled_fp8_quant_kernel( fp8_type *__restrict__ out, float *__restrict__ scale, scalar_t const *__restrict__ input, float scale_ub, const int hidden_size) { int const tid = threadIdx.x; int const token_idx = blockIdx.x; // Use int64 to avoid overflowing an int32 when calculating this offset int64_t offset = static_cast(token_idx) * hidden_size; scalar_t const *__restrict__ token_input = &input[offset]; fp8_type *__restrict__ token_output = &out[offset]; // For vectorization, token_input and token_output pointers need to be // aligned at 8-byte and 4-byte addresses respectively. bool const can_vectorize = hidden_size % 4 == 0; float absmax_val = 0.0f; if (can_vectorize) { absmax_val = thread_max_vec(token_input, hidden_size, tid, blockDim.x); } else { for (int i = tid; i < hidden_size; i += blockDim.x) { float const x = static_cast(token_input[i]); absmax_val = max(absmax_val, fabs(x)); } } using BlockReduce = cub::BlockReduce; __shared__ typename BlockReduce::TempStorage reduceStorage; float const block_absmax_val_maybe = BlockReduce(reduceStorage).Reduce(absmax_val, cub::Max{}, blockDim.x); __shared__ float token_scale; if (tid == 0) { if (scale_ub > 0) { token_scale = min(block_absmax_val_maybe, scale_ub); } else { token_scale = block_absmax_val_maybe; } // token scale computation // token_scale = max(token_scale / 448.f, // min_scaling_factor::val()); token_scale = token_scale / 448.f; scale[token_idx] = token_scale; } __syncthreads(); // Note that we don't use inverted scales so we can match FBGemm impl. if (can_vectorize) { scaled_fp8_conversion_vec( token_output, token_input, token_scale, hidden_size, tid, blockDim.x); } else { for (int i = tid; i < hidden_size; i += blockDim.x) { token_output[i] = scaled_fp8_conversion( static_cast(token_input[i]), token_scale); } } } } // namespace fastdeploy void StaticScaledFp8Quant(paddle::Tensor &out, // [..., d] paddle::Tensor const &input, // [..., d] paddle::Tensor const &scale) // [1] { PD_CHECK(out.dtype() == paddle::DataType::FLOAT8_E4M3FN); using fp8_t = phi::dtype::float8_e4m3fn; auto rank = input.dims().size(); int64_t num_tokens = input.numel() / input.dims()[rank - 1]; int64_t num_elems = input.numel(); dim3 grid(num_tokens); dim3 block(1024); cudaStream_t stream = input.stream(); switch (input.dtype()) { case paddle::DataType::FLOAT32: { using scalar_t = float; fastdeploy::scaled_fp8_quant_kernel <<>>(out.data(), input.data(), scale.data(), num_elems); break; } case paddle::DataType::FLOAT16: { using scalar_t = phi::dtype::float16; fastdeploy::scaled_fp8_quant_kernel <<>>(out.data(), input.data(), scale.data(), num_elems); break; } case paddle::DataType::BFLOAT16: { using scalar_t = phi::dtype::bfloat16; fastdeploy::scaled_fp8_quant_kernel <<>>(out.data(), input.data(), scale.data(), num_elems); break; } default: PD_THROW("Only supported attr of input type in [fp32, fp16, bf16]."); } } void DynamicScaledFp8Quant(paddle::Tensor &out, // [..., d] paddle::Tensor const &input, // [..., d] paddle::Tensor &scale) // [1] { PD_CHECK(out.dtype() == paddle::DataType::FLOAT8_E4M3FN); using fp8_t = phi::dtype::float8_e4m3fn; auto rank = input.dims().size(); int64_t num_tokens = input.numel() / input.dims()[rank - 1]; int64_t num_elems = input.numel(); dim3 grid(num_tokens); dim3 block(1024); cudaStream_t stream = input.stream(); switch (input.dtype()) { case paddle::DataType::FLOAT32: { using scalar_t = float; fastdeploy::segmented_max_reduction <<>>(scale.data(), input.data(), num_elems); fastdeploy::scaled_fp8_quant_kernel <<>>(out.data(), input.data(), scale.data(), num_elems); break; } case paddle::DataType::FLOAT16: { using scalar_t = phi::dtype::float16; fastdeploy::segmented_max_reduction <<>>(scale.data(), input.data(), num_elems); fastdeploy::scaled_fp8_quant_kernel <<>>(out.data(), input.data(), scale.data(), num_elems); break; } case paddle::DataType::BFLOAT16: { using scalar_t = phi::dtype::bfloat16; fastdeploy::segmented_max_reduction <<>>(scale.data(), input.data(), num_elems); fastdeploy::scaled_fp8_quant_kernel <<>>(out.data(), input.data(), scale.data(), num_elems); break; } default: PD_THROW("Only supported attr of input type in [fp32, fp16, bf16]."); } } void DynamicPerTokenScaledFp8Quant(paddle::Tensor &out, // [..., d] paddle::Tensor const &input, // [..., d] paddle::Tensor &scales, float scale_ub) { PD_CHECK(input.is_contiguous()); PD_CHECK(out.is_contiguous()); PD_CHECK(out.dtype() == paddle::DataType::FLOAT8_E4M3FN); using fp8_t = phi::dtype::float8_e4m3fn; auto rank = input.dims().size(); int const hidden_size = input.dims()[rank - 1]; int const num_tokens = input.numel() / hidden_size; dim3 const grid(num_tokens); dim3 const block(std::min(hidden_size, 1024)); cudaStream_t stream = input.stream(); switch (input.dtype()) { case paddle::DataType::FLOAT32: { using scalar_t = float; fastdeploy::dynamic_per_token_scaled_fp8_quant_kernel <<>>(out.data(), scales.data(), input.data(), scale_ub, hidden_size); break; } case paddle::DataType::FLOAT16: { using scalar_t = phi::dtype::float16; fastdeploy::dynamic_per_token_scaled_fp8_quant_kernel <<>>(out.data(), scales.data(), input.data(), scale_ub, hidden_size); break; } case paddle::DataType::BFLOAT16: { using scalar_t = phi::dtype::bfloat16; fastdeploy::dynamic_per_token_scaled_fp8_quant_kernel <<>>(out.data(), scales.data(), input.data(), scale_ub, hidden_size); break; } default: PD_THROW("Only supported attr of input type in [fp32, fp16, bf16]."); } } PD_BUILD_STATIC_OP(static_scaled_fp8_quant) .Inputs({"out", "input", "scale"}) .Outputs({"out_q"}) .SetInplaceMap({{"out", "out_q"}}) .SetKernelFn(PD_KERNEL(StaticScaledFp8Quant)); PD_BUILD_STATIC_OP(dynamic_scaled_fp8_quant) .Inputs({"out", "input", "scale"}) .Outputs({"out_q", "out_scale"}) .SetInplaceMap({{"out", "out_q"}, {"scale", "out_scale"}}) .SetKernelFn(PD_KERNEL(DynamicScaledFp8Quant)); PD_BUILD_STATIC_OP(dynamic_per_token_scaled_fp8_quant) .Inputs({"out", "input", "scale"}) .Attrs({"scale_ub: float"}) .Outputs({"out_q"}) .SetInplaceMap({{"out", "out_q"}}) .SetKernelFn(PD_KERNEL(DynamicPerTokenScaledFp8Quant));