mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* bind success * bind success fix * FDMat pybind, ResizeByShort pybind * FDMat pybind, ResizeByShort pybind, remove initialized_ * override BindProcessorManager::Run in python is available * PyProcessorManager done * vision_pybind fix * manager.py fix * add tutorials * remove Apply() bind * remove Apply() bind and fix * fix reviewed problem * fix reviewed problem * fix reviewed problem readme * fix reviewed problem readme etc * apply return outputs * nits * update readme * fix FDMatbatch * add op pybind: CenterCrop, Pad * add op overload for pass FDMatBatch --------- Co-authored-by: Wang Xinyu <shaywxy@gmail.com>
1.3 KiB
1.3 KiB
中文 | English
多硬件图像处理库
多硬件图像处理库(Vision Processor)可用于实现模型的预处理、后处理等图像操作,底层封装了多个第三方图像处理库,包括:
- OpenCV,用于通用CPU图像处理
- FlyCV,主要针对ARM CPU加速
- CV-CUDA,用于NVIDIA GPU
C++
待编写
Python
Python API目前支持的算子如下:
- ResizeByShort
- NormalizeAndPermute
用户可通过继承PyProcessorManager类,实现自己的图像处理模块。基类PyProcessorManager实现了GPU内存管理、CUDA stream管理等,用户仅需要实现apply()函数,在其中调用多硬件图像处理库中的算子、实现处理逻辑即可,具体实现可参考示例代码。
示例代码
CV-CUDA与OpenCV性能对比
CPU: Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz
GPU: T4
CUDA: 11.6
Processing logic: Resize -> NormalizeAndPermute
Warmup 100 rounds,tested 1000 rounds and get avg. latency.
Input Image Shape | Target shape | Batch Size | OpenCV | CV-CUDA | Gain |
---|---|---|---|---|---|
1920x1080 | 640x360 | 1 | 1.1572ms | 0.9067ms | 16.44% |
1280x720 | 640x360 | 1 | 2.7551ms | 0.5296ms | 80.78% |
360x240 | 640x360 | 1 | 3.3450ms | 0.2421ms | 92.76% |