Files
FastDeploy/examples/vision/facedet/blazeface/cpp/README.md
CoolCola 42d14e7119 [Model] Support BlazeFace Model (#1172)
* fit yolov7face file path

* TODO:添加yolov7facePython接口Predict

* resolve yolov7face.py

* resolve yolov7face.py

* resolve yolov7face.py

* add yolov7face example readme file

* [Doc] fix yolov7face example readme file

* [Doc]fix yolov7face example readme file

* support BlazeFace

* add blazeface readme file

* fix review problem

* fix code style error

* fix review problem

* fix review problem

* fix head file problem

* fix review problem

* fix review problem

* fix readme file problem

* add English readme file

* fix English readme file
2023-02-06 14:24:12 +08:00

79 lines
3.4 KiB
Markdown

English | [简体中文](README_CN.md)
# BlazeFace C++ Deployment Example
This directory provides examples that `infer.cc` fast finishes the deployment of BlazeFace on CPU/GPU。
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
Taking the CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory.
```bash
mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz # x.x.x >= 1.0.4
tar xvf fastdeploy-linux-x64-x.x.x.tgz # x.x.x >= 1.0.4
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x # x.x.x >= 1.0.4
make -j
#Download the official converted YOLOv7Face model files and test images
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/blzeface-1000e.tgz
#Use blazeface-1000e model
# CPU inference
./infer_demo blazeface-1000e/ test_lite_face_detector_3.jpg 0
# GPU Inference
./infer_demo blazeface-1000e/ test_lite_face_detector_3.jpg 1
```
The visualized result after running is as follows
<img width="640" src="https://user-images.githubusercontent.com/49013063/206170111-843febb6-67d6-4c46-a121-d87d003bba21.jpg">
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## BlazeFace C++ Interface
### BlazeFace Class
```c++
fastdeploy::vision::facedet::BlazeFace(
const string& model_file,
const string& params_file = "",
const string& config_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE)
```
BlazeFace model loading and initialization, among which model_file is the exported PADDLE model format
**Parameter**
> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path. Only passing an empty string when the model is in PADDLE format
> * **config_file**(str): Config file path. Only passing an empty string when the model is in PADDLE format
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(ModelFormat): Model format. PADDLE format by default
#### Predict Function
> ```c++
> BlazeFace::Predict(cv::Mat& im, FaceDetectionResult* result)
> ```
>
> Model prediction interface. Input images and output detection results.
>
> **Parameter**
>
> > * **im**: Input images in HWC or BGR format
> > * **result**: Detection results, including detection box and confidence of each box. Refer to [Vision Model Prediction Result](../../../../../docs/api/vision_results/) for FaceDetectionResult
- [Model Description](../../)
- [Python Deployment](../python)
- [Vision Model Prediction Results](../../../../../docs/api/vision_results/)