mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Update README_CN.md * Create README.md * Update README.md * Create README_CN.md * Update README.md * Update README_CN.md * Update README_CN.md * Create README.md * Update README.md * Update README_CN.md * Create README.md * Update README.md * Update README_CN.md * Rename examples/vision/faceid/insightface/rknpu2/cpp/README.md to examples/vision/faceid/insightface/rknpu2/README_EN.md * Rename README_CN.md to README.md * Rename README.md to README_EN.md * Rename README.md to README_CN.md * Rename README_EN.md to README.md * Create build.md * Create environment.md * Create issues.md * Update build.md * Update environment.md * Update issues.md * Update build.md * Update environment.md * Update issues.md
91 lines
4.5 KiB
Markdown
91 lines
4.5 KiB
Markdown
English | [简体中文](README_CN.md)
|
|
# YOLOv8 C++ Deployment Example
|
|
|
|
This directory provides the example that `infer.cc` fast finishes the deployment of YOLOv8 on CPU/GPU and GPU through TensorRT.
|
|
|
|
Two steps before deployment
|
|
|
|
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
|
- 2. Download the precompiled deployment library and samples code based on your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
|
|
|
Taking the CPU inference on Linux as an example, FastDeploy version 1.0.3 or above (x.x.x>=1.0.3) is required to support this model.
|
|
|
|
```bash
|
|
mkdir build
|
|
cd build
|
|
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
|
|
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
|
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
|
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
|
make -j
|
|
|
|
# 1. Download the official converted YOLOv8 ONNX model files and test images
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov8s.onnx
|
|
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
|
|
|
# CPU inference
|
|
./infer_demo yolov8s.onnx 000000014439.jpg 0
|
|
# GPU inference
|
|
./infer_demo yolov8s.onnx 000000014439.jpg 1
|
|
# TensorRT inference on GPU
|
|
./infer_demo yolov8s.onnx 000000014439.jpg 2
|
|
```
|
|
The visualized result is as follows
|
|
|
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184309358-d803347a-8981-44b6-b589-4608021ad0f4.jpg">
|
|
|
|
he above command works for Linux or MacOS. For SDK in Windows, refer to:
|
|
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
|
|
|
If you use Huawei Ascend NPU deployment, refer to the following document to initialize the deployment environment:
|
|
- [How to use Huawei Ascend NPU deployment](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
|
|
|
|
## YOLOv8 C++ Interface
|
|
|
|
### YOLOv8
|
|
|
|
```c++
|
|
fastdeploy::vision::detection::YOLOv8(
|
|
const string& model_file,
|
|
const string& params_file = "",
|
|
const RuntimeOption& runtime_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX)
|
|
```
|
|
|
|
YOLOv8 model loading and initialization, among which model_file is the exported ONNX model format
|
|
|
|
**Parameter**
|
|
|
|
> * **model_file**(str): Model file path
|
|
> * **params_file**(str): Parameter file path. Merely passing an empty string when the model is in ONNX format
|
|
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
|
|
> * **model_format**(ModelFormat): Model format. ONNX format by default
|
|
|
|
#### Predict function
|
|
|
|
> ```c++
|
|
> YOLOv8::Predict(cv::Mat* im, DetectionResult* result)
|
|
> ```
|
|
>
|
|
> Model prediction interface. Input images and output detection results
|
|
>
|
|
> **Parameter**
|
|
>
|
|
> > * **im**: Input images in HWC or BGR format
|
|
> > * **result**: Detection results, including detection box and confidence of each box. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for DetectionResult.
|
|
|
|
### Class Member Variable
|
|
#### Pre-processing Parameter
|
|
Users can modify the following preprocessing parameters based on actual needs to change the final inference and deployment results
|
|
|
|
> > * **size**(vector<int>): This parameter changes the resize used during preprocessing, containing two integer elements for [width, height] with default value [640, 640]
|
|
> > * **padding_value**(vector<float>): This parameter is used to change the padding value of images during resize, containing three floating-point elements that represent the value of three channels. Default value [114, 114, 114]
|
|
> > * **is_no_pad**(bool): Specify whether to resize the image through padding. `is_no_pad=ture` represents no paddling. Default `is_no_pad=false`
|
|
> > * **is_mini_pad**(bool): This parameter sets the width and height of the image after resize to the value nearest to the `size` member variable and to the point where the padded pixel size is divisible by the `stride` member variable. Default `is_mini_pad=false`
|
|
> > * **stride**(int): Used with the `stris_mini_pad` member variable. Default `stride=32`
|
|
|
|
- [Model Description](../../)
|
|
- [Python Deployment](../python)
|
|
- [Vision Model Prediction Results](../../../../../docs/api/vision_results/)
|
|
- [How to switch the backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)
|