Files
FastDeploy/examples/runtime/python/README_CN.md
charl-u 1135d33dd7 [Doc]Add English version of documents in examples/ (#1042)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples
2023-01-06 09:35:12 +08:00

1.5 KiB
Raw Blame History

简体中文 English

Python推理

在运行demo前需确认以下两个步骤

本文档以 PaddleClas 分类模型 MobileNetV2 为例展示 CPU 上的推理示例

1. 获取模型

import fastdeploy as fd

model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz"
fd.download_and_decompress(model_url, path=".")

2. 配置后端

option = fd.RuntimeOption()

option.set_model_path("mobilenetv2/inference.pdmodel",
                      "mobilenetv2/inference.pdiparams")

# **** CPU 配置 ****
option.use_cpu()
option.use_ort_backend()
option.set_cpu_thread_num(12)

# 初始化构造runtime
runtime = fd.Runtime(option)

# 获取模型输入名
input_name = runtime.get_input_info(0).name

# 构造随机数据进行推理
results = runtime.infer({
    input_name: np.random.rand(1, 3, 224, 224).astype("float32")
})

print(results[0].shape)

加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备

[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init	Runtime initialized with Backend::OrtBackend in device Device::CPU.

其它文档