Files
FastDeploy/examples/runtime/python/README.md
HCQ14 61c2f87e0c [Doc] Update English version of some documents (#1084)
* Create README_CN.md

* Update README.md

* Update README_CN.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update README_CN.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update WebDemo.md

* Update and rename WebDemo_en.md to WebDemo_CN.md

* Update and rename DEVELOPMENT_cn.md to DEVELOPMENT_CN.md

* Update DEVELOPMENT_CN.md

* Update DEVELOPMENT.md

* Update RNN.md

* Update and rename RNN_EN.md to RNN_CN.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update README.md

* Update README_cn.md

* Rename README_cn.md to README_CN.md

* Update README.md

* Update README_cn.md

* Rename README_cn.md to README_CN.md

* Update export.md

* Update and rename export_EN.md to export_CN.md

* Update README.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update kunlunxin.md

* Update classification_result.md

* Update classification_result_EN.md

* Rename classification_result_EN.md to classification_result_CN.md

* Update detection_result.md

* Update and rename detection_result_EN.md to detection_result_CN.md

* Update face_alignment_result.md

* Update and rename face_alignment_result_EN.md to face_alignment_result_CN.md

* Update face_detection_result.md

* Update and rename face_detection_result_EN.md to face_detection_result_CN.md

* Update face_recognition_result.md

* Update and rename face_recognition_result_EN.md to face_recognition_result_CN.md

* Update headpose_result.md

* Update and rename headpose_result_EN.md to headpose_result_CN.md

* Update keypointdetection_result.md

* Update and rename keypointdetection_result_EN.md to keypointdetection_result_CN.md

* Update matting_result.md

* Update and rename matting_result_EN.md to matting_result_CN.md

* Update mot_result.md

* Update and rename mot_result_EN.md to mot_result_CN.md

* Update ocr_result.md

* Update and rename ocr_result_EN.md to ocr_result_CN.md

* Update segmentation_result.md

* Update and rename segmentation_result_EN.md to segmentation_result_CN.md

* Update README.md

* Update README.md

* Update quantize.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
2023-01-06 18:01:34 +08:00

55 lines
1.7 KiB
Markdown

English | [简体中文](README_CN.md)
# Python Inference
Before running demo, the following two steps need to be confirmed:
- 1. Hardware and software environment meets the requirements. Please refer to [Environment requirements for FastDeploy](../../../docs/en/build_and_install/download_prebuilt_libraries.md).
- 2. Install FastDeploy Python whl package, please refer to [FastDeploy Python Installation](../../../docs/cn/build_and_install/download_prebuilt_libraries.md).
This document shows an inference example on the CPU using the PaddleClas classification model MobileNetV2 as an example.
## 1. Obtaining the model
``` python
import fastdeploy as fd
model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz"
fd.download_and_decompress(model_url, path=".")
```
## 2. Backend Configuration
``` python
option = fd.RuntimeOption()
option.set_model_path("mobilenetv2/inference.pdmodel",
"mobilenetv2/inference.pdiparams")
# **** CPU Configuration ****
option.use_cpu()
option.use_ort_backend()
option.set_cpu_thread_num(12)
# Initialise runtime
runtime = fd.Runtime(option)
# Get model input name
input_name = runtime.get_input_info(0).name
# Constructing random data for inference
results = runtime.infer({
input_name: np.random.rand(1, 3, 224, 224).astype("float32")
})
print(results[0].shape)
```
When loading is complete, you will get the following output information indicating the initialized backend and the hardware devices.
```
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU.
```
## Other Documents
- [A C++ example for Runtime C++](../cpp)
- [Switching hardware and backend for model inference](../../../docs/en/faq/how_to_change_backend.md)