Files
FastDeploy/docs/en/faq/rknpu2/export.md
charl-u 02eab973ce [Doc]Add English version of documents in docs/cn and api/vision_results (#931)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md
2022-12-22 18:15:01 +08:00

50 lines
1.8 KiB
Markdown

English | [中文](../../../cn/faq/rknpu2/export.md)
# Export Model
## Introduction
Fastdeploy has simply integrated the onnx->rknn conversion process. In this instruction, we first write yaml configuration files, then export models in `tools/export.py`.
Before you start the conversion, please check if the environment is installed successfully referring to [RKNN-Toolkit2 Installation](./install_rknn_toolkit2.md).
## Configuration Parameter in export.py
| Parameter | Whether it can be NULL | Parameter Role |
|-----------------|------------|--------------------|
| verbose | Y(DEFAULT=TRUE) | Decide whether to output specific information when converting |
| config_path | N | Path to configuration file |
## Config File Introduction
### Module of config yaml file
```yaml
model_path: ./portrait_pp_humansegv2_lite_256x144_pretrained.onnx
output_folder: ./
target_platform: RK3588
normalize:
mean: [[0.5,0.5,0.5]]
std: [[0.5,0.5,0.5]]
outputs: None
```
### Config parameters
* model_path: Model saving path.
* output_folder: Model saving folder name.
* target_platform: The device model runs on, only RK3588 or RK3568 can be chosen.
* normalize: Configure the normalize operation on NPU with two parameters std and mean.
* std: If you do the normalize operation externally, please configure to [1/255,1/255,1/255].
* mean: If you do the normalize operation externally, please configure to [0,0,0].
* outputs: Output node list, if you use default output node, please configure to None.
## How to convert model
Run the line in the root directory:
```bash
python tools/export.py --config_path=./config.yaml
```
## Things to note in Model Export
* Please don't export models with softmax or argmax, calculate them externally instead.