mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			151 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # 🔮 Speculative Decoding
 | ||
| 
 | ||
| This project implements an efficient **Speculative Decoding** inference framework based on PaddlePaddle. It supports **Multi-Token Proposing (MTP)** to accelerate large language model (LLM) generation, significantly reducing latency and improving throughput.
 | ||
| 
 | ||
| ---
 | ||
| 
 | ||
| ## ✅ Supported Speculative Decoding Methods
 | ||
| 
 | ||
| ### Supported
 | ||
| 
 | ||
| - **Ngram**
 | ||
| 
 | ||
| - **MTP (Multi-Token Prediction)**
 | ||
|   - ✅ Supported: TP Sharding
 | ||
|   - ✅ Supported: Shared Prefix
 | ||
|   - ✅ Supported: TP Sharding + PD Separation
 | ||
|   - ⏳ Coming Soon: EP + DP + PD Separation
 | ||
|   - ⏳ Coming Soon: Support Chunk-prefill
 | ||
|   - ⏳ Coming Soon: Multi-layer MTP Layer
 | ||
| 
 | ||
| ---
 | ||
| 
 | ||
| ### Coming Soon
 | ||
| 
 | ||
| - Draft Model
 | ||
| - Eagle
 | ||
| - Hydra
 | ||
| - Medusa
 | ||
| - ...
 | ||
| 
 | ||
| ---
 | ||
| 
 | ||
| ## ⚙️ Efficient Speculative Decoding Architecture
 | ||
| 
 | ||
| - **Attention Mechanism**: We employ [Cascade Append Attention](https://flashinfer.ai/2024/02/02/cascade-inference.html), which allows unified processing of queries with varying token lengths, enabling efficient verification. All tokens can be verified in a single forward pass. We deeply customized the underlying kernels to fully leverage Tensor Cores and maintain high throughput even under heavy concurrency.
 | ||
| 
 | ||
| - **Virtual Padding Mechanism**: A virtual padding strategy is used to locate output token batch IDs, eliminating the overhead of data copying and slicing operations.
 | ||
| 
 | ||
| - **Parallel Sampling and Verification**: We developed multiple fused CUDA kernels for concurrent sampling and verification. These kernels allow parallel processing for each sample in a batch, avoiding explicit loop execution on the host side.
 | ||
| 
 | ||
| - **Efficient Draft Model/MTP Framework**: Multiple fused CUDA kernels are used to handle pre- and post-processing within the model class, replacing traditional loop-based and slicing-based methods with a more performant and maintainable structure.
 | ||
| 
 | ||
| ---
 | ||
| 
 | ||
| ## 🔧 Configuration Parameters
 | ||
| 
 | ||
| - `method`: The speculative decoding strategy, currently supports `["mtp", "ngram"]`.
 | ||
| - `num_speculative_tokens`: Number of speculative tokens to generate; max is 5, currently MTP supports only 1.
 | ||
| - `model`: Path to the MTP draft model when using the `"mtp"` method.
 | ||
| - `quantization`: Quantization method of the MTP model (e.g., WINT4).
 | ||
| - Max `batch_size`: 256
 | ||
| 
 | ||
| ---
 | ||
| 
 | ||
| ## 🚀 Using Multi-Token Prediction (MTP)
 | ||
| 
 | ||
| For detailed theory, refer to:
 | ||
| 📄 [DeepSeek-V3 Paper](https://arxiv.org/pdf/2412.19437)
 | ||
| 
 | ||
| ### TP Sharding Mode
 | ||
| 
 | ||
| Launch service on 4 × H100 GPUs using WINT4 quantization (Dense: WINT8, MoE: WINT4):
 | ||
| 
 | ||
| > Config file: `benchmarks/yaml/eb45t-32k-wint4-mtp-h100-tp4.yaml`
 | ||
| 
 | ||
| ```bash
 | ||
| python -m fastdeploy.entrypoints.openai.api_server \
 | ||
|     --model ${path_to_main_model} \
 | ||
|     --tensor-parallel-size 4 \
 | ||
|     --config ${path_to_FastDeploy}benchmarks/yaml/eb45t-32k-wint4-mtp-h100-tp4.yaml \
 | ||
|     --speculative-config '{"method": "mtp", "num_speculative_tokens": 1, "model": "${path_to_mtp_model}"}'
 | ||
| ```
 | ||
| 
 | ||
| ### PD-Separated Deployment (1P1D Mode)
 | ||
| Deploy 1P1D on H100 with both Prefill (P) and Decode (D) nodes using TP4 + WINT4 quantization.
 | ||
| This deployment only requires changing the config and adding speculative_config.
 | ||
| For details, refer to the [PD Separation](./disaggregated.md).
 | ||
| - P Node(Prefill)
 | ||
| 
 | ||
| > Config file: `benchmarks/yaml/eb45t-32k-wint4-mtp-tp4-prefill.yaml`
 | ||
| 
 | ||
| ```
 | ||
| export FD_LOG_DIR="log_prefill"
 | ||
| rm -rf ${FD_LOG_DIR}
 | ||
| export CUDA_VISIBLE_DEVICES=0,1,2,3
 | ||
| 
 | ||
| python -m fastdeploy.entrypoints.openai.api_server \
 | ||
|     --model ${path_to_main_model} \
 | ||
|     --port 8180 \
 | ||
|     --metrics-port 8181 \
 | ||
|     --engine-worker-queue-port 8182 \
 | ||
|     --cache-queue-port 8183 \
 | ||
|     --workers 2 \
 | ||
|     --tensor-parallel-size 4 \
 | ||
|     --quantization wint4 \
 | ||
|     --splitwise-role "prefill" \
 | ||
|     --scheduler-name "splitwise" \
 | ||
|     --scheduler-host "127.0.0.1" \
 | ||
|     --scheduler-port 6379 \
 | ||
|     --scheduler-ttl 9000 \
 | ||
|     --scheduler-topic mtp \
 | ||
|     --config ${path_to_FastDeploy}/benchmarks/yaml/eb45t-32k-wint4-mtp-tp4-prefill.yaml \
 | ||
|     --scheduler-password "scheduler_mtp" \
 | ||
|     --speculative-config '{"method": "mtp", "num_speculative_tokens": 1, "model": "${path_to_mtp_model}"}' &
 | ||
| ```
 | ||
| 
 | ||
| - D Node(Decode)
 | ||
| 
 | ||
| > Config file: `benchmarks/yaml/eb45t-32k-wint4-mtp-tp4-decode.yaml`
 | ||
| 
 | ||
| ```
 | ||
| export FD_LOG_DIR="log_decode"
 | ||
| rm -rf ${FD_LOG_DIR}
 | ||
| export CUDA_VISIBLE_DEVICES=0,1,2,3
 | ||
| 
 | ||
| python -m fastdeploy.entrypoints.openai.api_server \
 | ||
|     --model ${path_to_main_model} \
 | ||
|     --port 8190 \
 | ||
|     --metrics-port 8191 \
 | ||
|     --engine-worker-queue-port 8192 \
 | ||
|     --cache-queue-port 8193 \
 | ||
|     --workers 2 \
 | ||
|     --tensor-parallel-size 4 \
 | ||
|     --quantization wint4 \
 | ||
|     --splitwise-role "decode" \
 | ||
|     --scheduler-name "splitwise" \
 | ||
|     --scheduler-host "127.0.0.1" \
 | ||
|     --scheduler-port 6379 \
 | ||
|     --scheduler-ttl 9000 \
 | ||
|     --scheduler-topic mtp \
 | ||
|     --config ${path_to_FastDeploy}/benchmarks/yaml/eb45t-32k-wint4-mtp-tp4-decode.yaml \
 | ||
|     --scheduler-password "scheduler_mtp" \
 | ||
|     --speculative-config '{"method": "mtp", "num_speculative_tokens": 1, "model": "${path_to_mtp_model}"}' &
 | ||
| ```
 | ||
| 
 | ||
| ## 🧠 Using Ngram-Based Decoding
 | ||
| This method uses an n-gram sliding window to match the prompt and generated tokens to predict draft tokens. It is particularly effective in scenarios with high input-output overlap (e.g., code completion, document search).
 | ||
| 
 | ||
| Run on 4 × H100 GPUs with WINT4 quantization:
 | ||
| 
 | ||
| > Config file: `benchmarks/yaml/eb45t-32k-wint4-mtp-h100-tp4.yaml`
 | ||
| 
 | ||
| ```
 | ||
| python -m fastdeploy.entrypoints.openai.api_server \
 | ||
|     --model ${path_to_main_model} \
 | ||
|     --tensor-parallel-size 4 \
 | ||
|     --config ${path_to_FastDeploy}benchmarks/yaml/eb45t-32k-wint4-mtp-h100-tp4.yaml \
 | ||
|     --speculative-config '{"method": "mtp", "num_speculative_tokens": 1, "model": "${mtp_model_path}"}'
 | ||
| 
 | ||
| ```
 | 
