mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 09:31:35 +08:00
83 lines
4.2 KiB
Markdown
Executable File
83 lines
4.2 KiB
Markdown
Executable File
English | [简体中文](README_CN.md)
|
||
# PaddleSeg Python Deployment Example
|
||
|
||
Before deployment, two steps require confirmation
|
||
|
||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
【Attention】For the deployment of **PP-Matting**、**PP-HumanMatting** and **ModNet**, refer to [Matting Model Deployment](../../../matting)
|
||
|
||
This directory provides examples that `infer.py` fast finishes the deployment of Unet on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
|
||
```bash
|
||
# Download the deployment example code
|
||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||
cd FastDeploy/examples/vision/segmentation/paddleseg/python
|
||
|
||
# Download Unet model files and test images
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz
|
||
tar -xvf Unet_cityscapes_without_argmax_infer.tgz
|
||
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||
|
||
# CPU inference
|
||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device cpu
|
||
# GPU inference
|
||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu
|
||
# TensorRT inference on GPU(Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
|
||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu --use_trt True
|
||
# kunlunxin XPU inference
|
||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device kunlunxin
|
||
```
|
||
|
||
The visualized result after running is as follows
|
||
<div align="center">
|
||
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
|
||
</div>
|
||
|
||
## PaddleSegModel Python Interface
|
||
|
||
```python
|
||
fd.vision.segmentation.PaddleSegModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||
```
|
||
|
||
PaddleSeg model loading and initialization, among which model_file, params_file, and config_file are the Paddle inference files exported from the training model. Refer to [Model Export](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/docs/model_export_cn.md) for more information
|
||
|
||
**Parameter**
|
||
|
||
> * **model_file**(str): Model file path
|
||
> * **params_file**(str): Parameter file path
|
||
> * **config_file**(str): Inference deployment configuration file
|
||
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
|
||
> * **model_format**(ModelFormat): Model format. Paddle format by default
|
||
|
||
### predict function
|
||
|
||
> ```python
|
||
> PaddleSegModel.predict(input_image)
|
||
> ```
|
||
>
|
||
> Model prediction interface. Input images and output detection results.
|
||
>
|
||
> **Parameter**
|
||
>
|
||
> > * **input_image**(np.ndarray): Input data in HWC or BGR format
|
||
|
||
> **Return**
|
||
>
|
||
> > Return `fastdeploy.vision.SegmentationResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of the structure.
|
||
|
||
### Class Member Variable
|
||
#### Pre-processing Parameter
|
||
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
|
||
|
||
> > * **is_vertical_screen**(bool): For PP-HumanSeg models, the input image is portrait with height greater than width by setting this parameter to `true`
|
||
#### Post-processing Parameter
|
||
> > * **apply_softmax**(bool): The `apply_softmax` parameter is not specified when the model is exported. Set this parameter to `true` to normalize the probability result (score_map) of the predicted output segmentation label (label_map) in softmax
|
||
|
||
## Other Documents
|
||
|
||
- [PaddleSeg Model Description](..)
|
||
- [PaddleSeg C++ Deployment](../cpp)
|
||
- [Model Prediction Results](../../../../../docs/api/vision_results/)
|
||
- [How to switch the model inference backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)
|