mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 12:52:29 +08:00
321 lines
14 KiB
Python
321 lines
14 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import json
|
||
import re
|
||
import uuid
|
||
from collections.abc import Sequence
|
||
from typing import Union
|
||
|
||
import partial_json_parser
|
||
|
||
|
||
def random_tool_call_id() -> str:
|
||
"""Generate a random tool call ID"""
|
||
return f"chatcmpl-tool-{str(uuid.uuid4().hex)}"
|
||
|
||
|
||
from fastdeploy.entrypoints.openai.protocol import (
|
||
ChatCompletionRequest,
|
||
DeltaFunctionCall,
|
||
DeltaMessage,
|
||
DeltaToolCall,
|
||
ExtractedToolCallInformation,
|
||
FunctionCall,
|
||
ToolCall,
|
||
)
|
||
from fastdeploy.entrypoints.openai.tool_parsers.abstract_tool_parser import (
|
||
ToolParser,
|
||
ToolParserManager,
|
||
)
|
||
from fastdeploy.utils import data_processor_logger
|
||
|
||
|
||
@ToolParserManager.register_module("ernie_x1")
|
||
class ErnieX1ToolParser(ToolParser):
|
||
"""
|
||
Tool parser for Ernie model version 4.5.1.
|
||
This parser handles tool calls with newline formats.
|
||
"""
|
||
|
||
def __init__(self, tokenizer):
|
||
super().__init__(tokenizer)
|
||
|
||
self.prev_tool_call_arr: list[dict] = []
|
||
self.current_tool_id: int = -1
|
||
self.current_tool_name_sent: bool = False
|
||
self.streamed_args_for_tool: list[str] = [] # map what has been streamed for each tool so far to a list
|
||
self.buffer: str = "" # buffer for accumulating unprocessed streaming content
|
||
|
||
if not self.model_tokenizer:
|
||
raise ValueError(
|
||
"The model tokenizer must be passed to the ToolCallParser constructor during construction."
|
||
)
|
||
|
||
def extract_tool_calls(self, model_output: str, request: ChatCompletionRequest) -> ExtractedToolCallInformation:
|
||
"""
|
||
Extract the tool calls from a complete model response.
|
||
Supports XML-style formats with newlines:
|
||
- XML format: <think>\n...\n</think>\n\n\n<tool_call>\n{...}\n</tool_call>\n...
|
||
|
||
Handles boundary cases:
|
||
1. Only name and partial arguments: {"name": "get_weather", "arguments": {"location": "北京"
|
||
2. Only partial name: {"name": "get_we
|
||
3. Only name and arguments field without content: {"name": "get_weather", "argume
|
||
"""
|
||
|
||
try:
|
||
tool_calls = []
|
||
|
||
# Check for invalid <response> tags before tool calls
|
||
if re.search(r"<response>[\s\S]*?</response>\s*(?=<tool_call>)", model_output):
|
||
data_processor_logger.error("Invalid format: <response> tags found before <tool_call>")
|
||
return ExtractedToolCallInformation(tools_called=False, content=model_output)
|
||
|
||
function_call_arr = []
|
||
remaining_text = model_output
|
||
|
||
while True:
|
||
# 查找下一个tool_call块
|
||
tool_call_pos = remaining_text.find("<tool_call>")
|
||
if tool_call_pos == -1:
|
||
break
|
||
|
||
# 提取tool_call开始位置后的内容
|
||
tool_content_start = tool_call_pos + len("<tool_call>")
|
||
tool_content_end = remaining_text.find("</tool_call>", tool_content_start)
|
||
|
||
tool_json = ""
|
||
if tool_content_end == -1:
|
||
# 处理未闭合的tool_call块(截断情况)
|
||
tool_json = remaining_text[tool_content_start:].strip()
|
||
remaining_text = "" # 没有更多内容需要处理
|
||
else:
|
||
# 处理完整的tool_call块
|
||
tool_json = remaining_text[tool_content_start:tool_content_end].strip()
|
||
remaining_text = remaining_text[tool_content_end + len("</tool_call>") :]
|
||
|
||
if not tool_json:
|
||
continue
|
||
|
||
# 处理JSON内容
|
||
tool_json = tool_json.strip()
|
||
if not tool_json.startswith("{"):
|
||
tool_json = "{" + tool_json
|
||
if not tool_json.endswith("}"):
|
||
tool_json = tool_json + "}"
|
||
|
||
try:
|
||
# 首先尝试标准JSON解析
|
||
try:
|
||
tool_data = json.loads(tool_json)
|
||
|
||
if isinstance(tool_data, dict) and "name" in tool_data and "arguments" in tool_data:
|
||
function_call_arr.append(
|
||
{
|
||
"name": tool_data["name"],
|
||
"arguments": tool_data["arguments"],
|
||
"_is_complete": True, # 明确标记为完整解析
|
||
}
|
||
)
|
||
continue
|
||
except json.JSONDecodeError:
|
||
pass
|
||
|
||
# 标准解析失败时尝试partial_json_parser
|
||
from partial_json_parser.core.options import Allow
|
||
|
||
try:
|
||
tool_data = {}
|
||
flags = Allow.ALL & ~Allow.STR
|
||
|
||
# 解析name字段
|
||
name_match = re.search(r'"name"\s*:\s*"([^"]*)"', tool_json)
|
||
if name_match:
|
||
tool_data["name"] = name_match.group(1)
|
||
|
||
# 解析arguments字段
|
||
args_match = re.search(r'"arguments"\s*:\s*(\{.*)', tool_json)
|
||
if args_match:
|
||
try:
|
||
tool_data["arguments"] = partial_json_parser.loads(args_match.group(1), flags=flags)
|
||
except:
|
||
tool_data["arguments"] = None
|
||
|
||
if isinstance(tool_data, dict):
|
||
function_call_arr.append(
|
||
{
|
||
"name": tool_data.get("name", ""),
|
||
"arguments": tool_data.get("arguments", {}),
|
||
"_is_partial": True, # 标记为部分解析
|
||
}
|
||
)
|
||
except Exception as e:
|
||
data_processor_logger.debug(f"Failed to parse tool call: {str(e)}")
|
||
continue
|
||
except Exception as e:
|
||
data_processor_logger.debug(f"Failed to parse tool call: {str(e)}")
|
||
continue
|
||
|
||
if not function_call_arr:
|
||
data_processor_logger.error("No valid tool calls found")
|
||
return ExtractedToolCallInformation(tools_called=False, content=model_output)
|
||
|
||
tool_calls = []
|
||
all_complete = True # 初始设为True,只要有一个不完整就变为False
|
||
|
||
for tool_call in function_call_arr:
|
||
# 记录工具调用解析状态
|
||
is_complete = tool_call.get("_is_complete", False)
|
||
is_partial = tool_call.get("_is_partial", False)
|
||
|
||
# 只要有一个不完整就认为整体不完整
|
||
if not is_complete or is_partial:
|
||
all_complete = False
|
||
|
||
# 处理参数序列化
|
||
tool_args = tool_call.get("arguments", {})
|
||
if not isinstance(tool_args, dict):
|
||
tool_args = {}
|
||
|
||
try:
|
||
args_str = json.dumps(tool_args, ensure_ascii=False) if tool_args else "{}"
|
||
except:
|
||
args_str = "{}"
|
||
|
||
tool_calls.append(
|
||
ToolCall(
|
||
type="function",
|
||
id=random_tool_call_id(),
|
||
function=FunctionCall(
|
||
name=tool_call.get("name", ""),
|
||
arguments=args_str,
|
||
),
|
||
)
|
||
)
|
||
|
||
# 只有当所有工具调用都明确标记为complete时才返回tools_called=True
|
||
return ExtractedToolCallInformation(
|
||
tools_called=all_complete, tool_calls=tool_calls if tool_calls else None, content=""
|
||
)
|
||
|
||
except Exception as e:
|
||
data_processor_logger.error(f"Error in extracting tool call from response: {str(e)}")
|
||
return ExtractedToolCallInformation(tools_called=False, tool_calls=None, content=model_output)
|
||
|
||
def extract_tool_calls_streaming(
|
||
self,
|
||
previous_text: str,
|
||
current_text: str,
|
||
delta_text: str,
|
||
previous_token_ids: Sequence[int],
|
||
current_token_ids: Sequence[int],
|
||
delta_token_ids: Sequence[int],
|
||
request: dict,
|
||
) -> Union[DeltaMessage, None]:
|
||
# 忽略空chunk
|
||
if len(delta_text.strip()) == 0:
|
||
return None
|
||
|
||
try:
|
||
delta = None
|
||
# 使用buffer累积delta_text内容
|
||
self.buffer += delta_text
|
||
|
||
# 处理增量中的新tool_call开始
|
||
if "<tool_call>" in delta_text and "<tool_call>" not in previous_text:
|
||
self.current_tool_id = (
|
||
max(self.current_tool_id, 0) if self.current_tool_id == -1 else self.current_tool_id + 1
|
||
)
|
||
self.current_tool_name_sent = False
|
||
if len(self.streamed_args_for_tool) <= self.current_tool_id:
|
||
self.streamed_args_for_tool.append("")
|
||
data_processor_logger.debug(f"New tool call started with ID: {self.current_tool_id}")
|
||
|
||
# 增量解析逻辑
|
||
|
||
# 1. 尝试解析name字段
|
||
if not self.current_tool_name_sent and '"name"' in self.buffer:
|
||
name_match = re.search(r'"name"\s*:\s*"([^"]*)"', self.buffer)
|
||
if name_match:
|
||
name = name_match.group(1)
|
||
if name:
|
||
delta = DeltaMessage(
|
||
tool_calls=[
|
||
DeltaToolCall(
|
||
index=self.current_tool_id,
|
||
type="function",
|
||
id=random_tool_call_id(),
|
||
function=DeltaFunctionCall(name=name).model_dump(exclude_none=True),
|
||
)
|
||
]
|
||
)
|
||
print("delta name:", delta)
|
||
# 删除已处理的name部分
|
||
self.buffer = self.buffer[name_match.end() :]
|
||
self.current_tool_name_sent = True
|
||
return delta
|
||
# 2. 尝试解析arguments字段
|
||
if '"arguments"' in self.buffer:
|
||
args_match = re.search(r'"arguments"\s*:\s*(\{.*)', self.buffer)
|
||
if args_match:
|
||
args_content = args_match.group(1)
|
||
# 处理多余的大括号
|
||
open_braces = args_content.count("{")
|
||
close_braces = args_content.count("}")
|
||
if close_braces > open_braces:
|
||
args_content = args_content[: args_content.rfind("}")]
|
||
try:
|
||
# 增量解析arguments
|
||
parsed_args = json.loads(args_content)
|
||
if isinstance(parsed_args, dict):
|
||
args_json = json.dumps(parsed_args, ensure_ascii=False)
|
||
if len(args_json) > len(self.streamed_args_for_tool[self.current_tool_id]):
|
||
argument_diff = args_json[len(self.streamed_args_for_tool[self.current_tool_id]) :]
|
||
delta = DeltaMessage(
|
||
tool_calls=[
|
||
DeltaToolCall(
|
||
index=self.current_tool_id,
|
||
function=DeltaFunctionCall(arguments=argument_diff).model_dump(
|
||
exclude_none=True
|
||
),
|
||
)
|
||
]
|
||
)
|
||
print("delta argument:", delta)
|
||
# 删除已处理部分
|
||
processed_pos = args_match.start() + len('"arguments":')
|
||
self.buffer = (
|
||
self.buffer[:processed_pos] + self.buffer[processed_pos + len(args_json) :]
|
||
)
|
||
self.streamed_args_for_tool[self.current_tool_id] = args_json
|
||
return delta
|
||
except Exception as e:
|
||
data_processor_logger.debug(f"Partial arguments parsing: {str(e)}")
|
||
|
||
if "</tool_call>" in self.buffer:
|
||
end_pos = self.buffer.find("</tool_call>")
|
||
self.buffer = self.buffer[end_pos + len("</tool_call>") :]
|
||
|
||
# 完成当前工具调用处理
|
||
self.current_tool_id += 1
|
||
self.current_tool_name_sent = False
|
||
self.streamed_args_for_tool.append("")
|
||
|
||
return delta
|
||
|
||
except Exception as e:
|
||
data_processor_logger.error(f"Error in streaming tool call extraction: {str(e)}")
|
||
return None
|