# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import re import uuid from collections.abc import Sequence from typing import Union import partial_json_parser def random_tool_call_id() -> str: """Generate a random tool call ID""" return f"chatcmpl-tool-{str(uuid.uuid4().hex)}" from fastdeploy.entrypoints.openai.protocol import ( ChatCompletionRequest, DeltaFunctionCall, DeltaMessage, DeltaToolCall, ExtractedToolCallInformation, FunctionCall, ToolCall, ) from fastdeploy.entrypoints.openai.tool_parsers.abstract_tool_parser import ( ToolParser, ToolParserManager, ) from fastdeploy.utils import data_processor_logger @ToolParserManager.register_module("ernie_x1") class ErnieX1ToolParser(ToolParser): """ Tool parser for Ernie model version 4.5.1. This parser handles tool calls with newline formats. """ def __init__(self, tokenizer): super().__init__(tokenizer) self.prev_tool_call_arr: list[dict] = [] self.current_tool_id: int = -1 self.current_tool_name_sent: bool = False self.streamed_args_for_tool: list[str] = [] # map what has been streamed for each tool so far to a list self.buffer: str = "" # buffer for accumulating unprocessed streaming content if not self.model_tokenizer: raise ValueError( "The model tokenizer must be passed to the ToolCallParser constructor during construction." ) def extract_tool_calls(self, model_output: str, request: ChatCompletionRequest) -> ExtractedToolCallInformation: """ Extract the tool calls from a complete model response. Supports XML-style formats with newlines: - XML format: \n...\n\n\n\n\n{...}\n\n... Handles boundary cases: 1. Only name and partial arguments: {"name": "get_weather", "arguments": {"location": "北京" 2. Only partial name: {"name": "get_we 3. Only name and arguments field without content: {"name": "get_weather", "argume """ try: tool_calls = [] # Check for invalid tags before tool calls if re.search(r"[\s\S]*?\s*(?=)", model_output): data_processor_logger.error("Invalid format: tags found before ") return ExtractedToolCallInformation(tools_called=False, content=model_output) function_call_arr = [] remaining_text = model_output while True: # 查找下一个tool_call块 tool_call_pos = remaining_text.find("") if tool_call_pos == -1: break # 提取tool_call开始位置后的内容 tool_content_start = tool_call_pos + len("") tool_content_end = remaining_text.find("", tool_content_start) tool_json = "" if tool_content_end == -1: # 处理未闭合的tool_call块(截断情况) tool_json = remaining_text[tool_content_start:].strip() remaining_text = "" # 没有更多内容需要处理 else: # 处理完整的tool_call块 tool_json = remaining_text[tool_content_start:tool_content_end].strip() remaining_text = remaining_text[tool_content_end + len("") :] if not tool_json: continue # 处理JSON内容 tool_json = tool_json.strip() if not tool_json.startswith("{"): tool_json = "{" + tool_json if not tool_json.endswith("}"): tool_json = tool_json + "}" try: # 首先尝试标准JSON解析 try: tool_data = json.loads(tool_json) if isinstance(tool_data, dict) and "name" in tool_data and "arguments" in tool_data: function_call_arr.append( { "name": tool_data["name"], "arguments": tool_data["arguments"], "_is_complete": True, # 明确标记为完整解析 } ) continue except json.JSONDecodeError: pass # 标准解析失败时尝试partial_json_parser from partial_json_parser.core.options import Allow try: tool_data = {} flags = Allow.ALL & ~Allow.STR # 解析name字段 name_match = re.search(r'"name"\s*:\s*"([^"]*)"', tool_json) if name_match: tool_data["name"] = name_match.group(1) # 解析arguments字段 args_match = re.search(r'"arguments"\s*:\s*(\{.*)', tool_json) if args_match: try: tool_data["arguments"] = partial_json_parser.loads(args_match.group(1), flags=flags) except: tool_data["arguments"] = None if isinstance(tool_data, dict): function_call_arr.append( { "name": tool_data.get("name", ""), "arguments": tool_data.get("arguments", {}), "_is_partial": True, # 标记为部分解析 } ) except Exception as e: data_processor_logger.debug(f"Failed to parse tool call: {str(e)}") continue except Exception as e: data_processor_logger.debug(f"Failed to parse tool call: {str(e)}") continue if not function_call_arr: data_processor_logger.error("No valid tool calls found") return ExtractedToolCallInformation(tools_called=False, content=model_output) tool_calls = [] all_complete = True # 初始设为True,只要有一个不完整就变为False for tool_call in function_call_arr: # 记录工具调用解析状态 is_complete = tool_call.get("_is_complete", False) is_partial = tool_call.get("_is_partial", False) # 只要有一个不完整就认为整体不完整 if not is_complete or is_partial: all_complete = False # 处理参数序列化 tool_args = tool_call.get("arguments", {}) if not isinstance(tool_args, dict): tool_args = {} try: args_str = json.dumps(tool_args, ensure_ascii=False) if tool_args else "{}" except: args_str = "{}" tool_calls.append( ToolCall( type="function", id=random_tool_call_id(), function=FunctionCall( name=tool_call.get("name", ""), arguments=args_str, ), ) ) # 只有当所有工具调用都明确标记为complete时才返回tools_called=True return ExtractedToolCallInformation( tools_called=all_complete, tool_calls=tool_calls if tool_calls else None, content="" ) except Exception as e: data_processor_logger.error(f"Error in extracting tool call from response: {str(e)}") return ExtractedToolCallInformation(tools_called=False, tool_calls=None, content=model_output) def extract_tool_calls_streaming( self, previous_text: str, current_text: str, delta_text: str, previous_token_ids: Sequence[int], current_token_ids: Sequence[int], delta_token_ids: Sequence[int], request: dict, ) -> Union[DeltaMessage, None]: # 忽略空chunk if len(delta_text.strip()) == 0: return None try: delta = None # 使用buffer累积delta_text内容 self.buffer += delta_text # 处理增量中的新tool_call开始 if "" in delta_text and "" not in previous_text: self.current_tool_id = ( max(self.current_tool_id, 0) if self.current_tool_id == -1 else self.current_tool_id + 1 ) self.current_tool_name_sent = False if len(self.streamed_args_for_tool) <= self.current_tool_id: self.streamed_args_for_tool.append("") data_processor_logger.debug(f"New tool call started with ID: {self.current_tool_id}") # 增量解析逻辑 # 1. 尝试解析name字段 if not self.current_tool_name_sent and '"name"' in self.buffer: name_match = re.search(r'"name"\s*:\s*"([^"]*)"', self.buffer) if name_match: name = name_match.group(1) if name: delta = DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, type="function", id=random_tool_call_id(), function=DeltaFunctionCall(name=name).model_dump(exclude_none=True), ) ] ) print("delta name:", delta) # 删除已处理的name部分 self.buffer = self.buffer[name_match.end() :] self.current_tool_name_sent = True return delta # 2. 尝试解析arguments字段 if '"arguments"' in self.buffer: args_match = re.search(r'"arguments"\s*:\s*(\{.*)', self.buffer) if args_match: args_content = args_match.group(1) # 处理多余的大括号 open_braces = args_content.count("{") close_braces = args_content.count("}") if close_braces > open_braces: args_content = args_content[: args_content.rfind("}")] try: # 增量解析arguments parsed_args = json.loads(args_content) if isinstance(parsed_args, dict): args_json = json.dumps(parsed_args, ensure_ascii=False) if len(args_json) > len(self.streamed_args_for_tool[self.current_tool_id]): argument_diff = args_json[len(self.streamed_args_for_tool[self.current_tool_id]) :] delta = DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, function=DeltaFunctionCall(arguments=argument_diff).model_dump( exclude_none=True ), ) ] ) print("delta argument:", delta) # 删除已处理部分 processed_pos = args_match.start() + len('"arguments":') self.buffer = ( self.buffer[:processed_pos] + self.buffer[processed_pos + len(args_json) :] ) self.streamed_args_for_tool[self.current_tool_id] = args_json return delta except Exception as e: data_processor_logger.debug(f"Partial arguments parsing: {str(e)}") if "" in self.buffer: end_pos = self.buffer.find("") self.buffer = self.buffer[end_pos + len("") :] # 完成当前工具调用处理 self.current_tool_id += 1 self.current_tool_name_sent = False self.streamed_args_for_tool.append("") return delta except Exception as e: data_processor_logger.error(f"Error in streaming tool call extraction: {str(e)}") return None