Files
FastDeploy/tests/eval_example/test_pptinypose.py
huangjianhui b565c15bf7 [Model] Add tinypose single && pipeline model (#177)
* Add tinypose model

* Add PPTinypose python API

* Fix picodet preprocess bug && Add Tinypose examples

* Update tinypose example code

* Update ppseg preprocess if condition

* Update ppseg backend support type

* Update permute.h

* Update README.md

* Update code with comments

* Move files dir

* Delete premute.cc

* Add single model pptinypose

* Delete pptinypose old code in ppdet

* Code format

* Add ppdet + pptinypose pipeline model

* Fix bug for posedetpipeline

* Change Frontend to ModelFormat

* Change Frontend to ModelFormat in __init__.py

* Add python posedetpipeline/

* Update pptinypose example dir name

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Create keypointdetection_result.md

* Create README.md

* Create README.md

* Create README.md

* Update README.md

* Update README.md

* Create README.md

* Fix det_keypoint_unite_infer.py bug

* Create README.md

* Update PP-Tinypose by comment

* Update by comment

* Add pipeline directory

* Add pptinypose dir

* Update pptinypose to align accuracy

* Addd warpAffine processor

* Update GetCpuMat to  GetOpenCVMat

* Add comment for pptinypose && pipline

* Update docs/main_page.md

* Add README.md for pptinypose

* Add README for det_keypoint_unite

* Remove ENABLE_PIPELINE option

* Remove ENABLE_PIPELINE option

* Change pptinypose default backend

* PP-TinyPose Pipeline support multi PP-Detection models

* Update pp-tinypose comment

* Update by comments

* Add single test example

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-21 09:28:23 +08:00

101 lines
4.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import numpy as np
def test_keypointdetection_pptinypose():
pp_tinypose_model_url = "https://bj.bcebos.com/fastdeploy/tests/PP_TinyPose_256x192_test.tgz"
fd.download_and_decompress(pp_tinypose_model_url, ".")
model_path = "./PP_TinyPose_256x192_test"
# 配置runtime加载模型
runtime_option = fd.RuntimeOption()
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
image_file = os.path.join(model_path, "hrnet_demo.jpg")
baseline_file = os.path.join(model_path, "baseline.npy")
model = fd.vision.keypointdetection.PPTinyPose(
model_file, params_file, config_file, runtime_option=runtime_option)
# 预测图片关键点
im = cv2.imread(image_file)
result = model.predict(im)
result = np.concatenate(
(np.array(result.keypoints), np.array(result.scores)[:, np.newaxis]),
axis=1)
baseline = np.load(baseline_file)
diff = np.fabs(result - np.array(baseline))
thres = 1e-05
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)
print("No diff")
def test_keypointdetection_det_keypoint_unite():
det_keypoint_unite_model_url = "https://bj.bcebos.com/fastdeploy/tests/PicoDet_320x320_TinyPose_256x192_test.tgz"
fd.download_and_decompress(det_keypoint_unite_model_url, ".")
model_path = "./PicoDet_320x320_TinyPose_256x192_test"
# 配置runtime加载模型
runtime_option = fd.RuntimeOption()
tinypose_model_file = os.path.join(
model_path, "PP_TinyPose_256x192_infer/model.pdmodel")
tinypose_params_file = os.path.join(
model_path, "PP_TinyPose_256x192_infer/model.pdiparams")
tinypose_config_file = os.path.join(
model_path, "PP_TinyPose_256x192_infer/infer_cfg.yml")
picodet_model_file = os.path.join(
model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/model.pdmodel")
picodet_params_file = os.path.join(
model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/model.pdiparams")
picodet_config_file = os.path.join(
model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/infer_cfg.yml")
image_file = os.path.join(model_path, "000000018491.jpg")
# image_file = os.path.join(model_path, "hrnet_demo.jpg")
baseline_file = os.path.join(model_path, "baseline.npy")
tinypose_model = fd.vision.keypointdetection.PPTinyPose(
tinypose_model_file,
tinypose_params_file,
tinypose_config_file,
runtime_option=runtime_option)
det_model = fd.vision.detection.PicoDet(
picodet_model_file,
picodet_params_file,
picodet_config_file,
runtime_option=runtime_option)
# 预测图片关键点
im = cv2.imread(image_file)
pipeline = fd.pipeline.PPTinyPose(det_model, tinypose_model)
pipeline.detection_model_score_threshold = 0.5
result = pipeline.predict(im)
print(result)
result = np.concatenate(
(np.array(result.keypoints), np.array(result.scores)[:, np.newaxis]),
axis=1)
print(result)
np.save("baseline.npy", result)
baseline = np.load(baseline_file)
diff = np.fabs(result - np.array(baseline))
thres = 1e-05
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)
print("No diff")