# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os import numpy as np def test_keypointdetection_pptinypose(): pp_tinypose_model_url = "https://bj.bcebos.com/fastdeploy/tests/PP_TinyPose_256x192_test.tgz" fd.download_and_decompress(pp_tinypose_model_url, ".") model_path = "./PP_TinyPose_256x192_test" # 配置runtime,加载模型 runtime_option = fd.RuntimeOption() model_file = os.path.join(model_path, "model.pdmodel") params_file = os.path.join(model_path, "model.pdiparams") config_file = os.path.join(model_path, "infer_cfg.yml") image_file = os.path.join(model_path, "hrnet_demo.jpg") baseline_file = os.path.join(model_path, "baseline.npy") model = fd.vision.keypointdetection.PPTinyPose( model_file, params_file, config_file, runtime_option=runtime_option) # 预测图片关键点 im = cv2.imread(image_file) result = model.predict(im) result = np.concatenate( (np.array(result.keypoints), np.array(result.scores)[:, np.newaxis]), axis=1) baseline = np.load(baseline_file) diff = np.fabs(result - np.array(baseline)) thres = 1e-05 assert diff.max() < thres, "The diff is %f, which is bigger than %f" % ( diff.max(), thres) print("No diff") def test_keypointdetection_det_keypoint_unite(): det_keypoint_unite_model_url = "https://bj.bcebos.com/fastdeploy/tests/PicoDet_320x320_TinyPose_256x192_test.tgz" fd.download_and_decompress(det_keypoint_unite_model_url, ".") model_path = "./PicoDet_320x320_TinyPose_256x192_test" # 配置runtime,加载模型 runtime_option = fd.RuntimeOption() tinypose_model_file = os.path.join( model_path, "PP_TinyPose_256x192_infer/model.pdmodel") tinypose_params_file = os.path.join( model_path, "PP_TinyPose_256x192_infer/model.pdiparams") tinypose_config_file = os.path.join( model_path, "PP_TinyPose_256x192_infer/infer_cfg.yml") picodet_model_file = os.path.join( model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/model.pdmodel") picodet_params_file = os.path.join( model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/model.pdiparams") picodet_config_file = os.path.join( model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/infer_cfg.yml") image_file = os.path.join(model_path, "000000018491.jpg") # image_file = os.path.join(model_path, "hrnet_demo.jpg") baseline_file = os.path.join(model_path, "baseline.npy") tinypose_model = fd.vision.keypointdetection.PPTinyPose( tinypose_model_file, tinypose_params_file, tinypose_config_file, runtime_option=runtime_option) det_model = fd.vision.detection.PicoDet( picodet_model_file, picodet_params_file, picodet_config_file, runtime_option=runtime_option) # 预测图片关键点 im = cv2.imread(image_file) pipeline = fd.pipeline.PPTinyPose(det_model, tinypose_model) pipeline.detection_model_score_threshold = 0.5 result = pipeline.predict(im) print(result) result = np.concatenate( (np.array(result.keypoints), np.array(result.scores)[:, np.newaxis]), axis=1) print(result) np.save("baseline.npy", result) baseline = np.load(baseline_file) diff = np.fabs(result - np.array(baseline)) thres = 1e-05 assert diff.max() < thres, "The diff is %f, which is bigger than %f" % ( diff.max(), thres) print("No diff")