Files
FastDeploy/fastdeploy/vision/classification/contrib/yolov5cls.h
WJJ1995 b557dbc2d8 Add YOLOv5-cls Model (#335)
* add yolov5cls

* fixed bugs

* fixed bugs

* fixed preprocess bug

* add yolov5cls readme

* deal with comments

* Add YOLOv5Cls Note

* add yolov5cls test

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-12 15:57:26 +08:00

71 lines
2.9 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
/** \brief All image classification model APIs are defined inside this namespace
*
*/
namespace classification {
/*! @brief YOLOv5Cls model object used when to load a YOLOv5Cls model exported by YOLOv5
*/
class FASTDEPLOY_DECL YOLOv5Cls : public FastDeployModel {
public:
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g yolov5cls/yolov5n-cls.onnx
* \param[in] params_file Path of parameter file, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
YOLOv5Cls(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
/// Get model's name
virtual std::string ModelName() const { return "yolov5cls"; }
/** \brief Predict the classification result for an input image
*
* \param[in] im The input image data, comes from cv::imread()
* \param[in] result The output classification result will be writen to this structure
* \param[in] topk Returns the topk classification result with the highest predicted probability, the default is 1
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1);
/// Preprocess image size, the default is (224, 224)
std::vector<int> size;
private:
bool Initialize();
/// Preprocess an input image, and set the preprocessed results to `outputs`
bool Preprocess(Mat* mat, FDTensor* output,
const std::vector<int>& size = {224, 224});
/// Postprocess the inferenced results, and set the final result to `result`
bool Postprocess(const FDTensor& infer_result, ClassifyResult* result,
int topk = 1);
};
} // namespace classification
} // namespace vision
} // namespace fastdeploy