mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00

* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test Co-authored-by: Jason <jiangjiajun@baidu.com>
71 lines
2.9 KiB
C++
Executable File
71 lines
2.9 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
/** \brief All image classification model APIs are defined inside this namespace
|
|
*
|
|
*/
|
|
namespace classification {
|
|
|
|
/*! @brief YOLOv5Cls model object used when to load a YOLOv5Cls model exported by YOLOv5
|
|
*/
|
|
class FASTDEPLOY_DECL YOLOv5Cls : public FastDeployModel {
|
|
public:
|
|
/** \brief Set path of model file and configuration file, and the configuration of runtime
|
|
*
|
|
* \param[in] model_file Path of model file, e.g yolov5cls/yolov5n-cls.onnx
|
|
* \param[in] params_file Path of parameter file, if the model format is ONNX, this parameter will be ignored
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
|
|
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
|
*/
|
|
YOLOv5Cls(const std::string& model_file, const std::string& params_file = "",
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
|
|
/// Get model's name
|
|
virtual std::string ModelName() const { return "yolov5cls"; }
|
|
|
|
/** \brief Predict the classification result for an input image
|
|
*
|
|
* \param[in] im The input image data, comes from cv::imread()
|
|
* \param[in] result The output classification result will be writen to this structure
|
|
* \param[in] topk Returns the topk classification result with the highest predicted probability, the default is 1
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1);
|
|
|
|
/// Preprocess image size, the default is (224, 224)
|
|
std::vector<int> size;
|
|
|
|
private:
|
|
bool Initialize();
|
|
/// Preprocess an input image, and set the preprocessed results to `outputs`
|
|
bool Preprocess(Mat* mat, FDTensor* output,
|
|
const std::vector<int>& size = {224, 224});
|
|
|
|
/// Postprocess the inferenced results, and set the final result to `result`
|
|
bool Postprocess(const FDTensor& infer_result, ClassifyResult* result,
|
|
int topk = 1);
|
|
};
|
|
|
|
} // namespace classification
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|