// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" namespace fastdeploy { namespace vision { /** \brief All image classification model APIs are defined inside this namespace * */ namespace classification { /*! @brief YOLOv5Cls model object used when to load a YOLOv5Cls model exported by YOLOv5 */ class FASTDEPLOY_DECL YOLOv5Cls : public FastDeployModel { public: /** \brief Set path of model file and configuration file, and the configuration of runtime * * \param[in] model_file Path of model file, e.g yolov5cls/yolov5n-cls.onnx * \param[in] params_file Path of parameter file, if the model format is ONNX, this parameter will be ignored * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends` * \param[in] model_format Model format of the loaded model, default is ONNX format */ YOLOv5Cls(const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX); /// Get model's name virtual std::string ModelName() const { return "yolov5cls"; } /** \brief Predict the classification result for an input image * * \param[in] im The input image data, comes from cv::imread() * \param[in] result The output classification result will be writen to this structure * \param[in] topk Returns the topk classification result with the highest predicted probability, the default is 1 * \return true if the prediction successed, otherwise false */ virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1); /// Preprocess image size, the default is (224, 224) std::vector size; private: bool Initialize(); /// Preprocess an input image, and set the preprocessed results to `outputs` bool Preprocess(Mat* mat, FDTensor* output, const std::vector& size = {224, 224}); /// Postprocess the inferenced results, and set the final result to `result` bool Postprocess(const FDTensor& infer_result, ClassifyResult* result, int topk = 1); }; } // namespace classification } // namespace vision } // namespace fastdeploy