Files
FastDeploy/examples/vision/classification/paddleclas/python/README.md
WJJ1995 b557dbc2d8 Add YOLOv5-cls Model (#335)
* add yolov5cls

* fixed bugs

* fixed bugs

* fixed preprocess bug

* add yolov5cls readme

* deal with comments

* Add YOLOv5Cls Note

* add yolov5cls test

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-12 15:57:26 +08:00

3.0 KiB
Raw Blame History

PaddleClas模型 Python部署示例

在部署前,需确认以下两个步骤

本目录下提供infer.py快速完成ResNet50_vd在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成

#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd  FastDeploy/examples/vision/classification/paddleclas/python

# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg

# CPU推理
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
# GPU推理
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1

运行完成后返回结果如下所示

ClassifyResult(
label_ids: 153,
scores: 0.686229,
)

PaddleClasModel Python接口

fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)

PaddleClas模型加载和初始化其中model_file, params_file为训练模型导出的Paddle inference文件具体请参考其文档说明模型导出

参数

  • model_file(str): 模型文件路径
  • params_file(str): 参数文件路径
  • config_file(str): 推理部署配置文件
  • runtime_option(RuntimeOption): 后端推理配置默认为None即采用默认配置
  • model_format(ModelFormat): 模型格式默认为Paddle格式

predict函数

PaddleClasModel.predict(input_image, topk=1)

模型预测结口输入图像直接输出分类topk结果。

参数

  • input_image(np.ndarray): 输入数据注意需为HWCBGR格式
  • topk(int):返回预测概率最高的topk个分类结果默认为1

返回

返回fastdeploy.vision.ClassifyResult结构体,结构体说明参考文档视觉模型预测结果

其它文档