Files
FastDeploy/fastdeploy/model_executor/models/qwen3.py
Yuanle Liu b455fd39f3
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
register_model_class compatible with plugins (#4236)
2025-09-24 11:17:12 +08:00

425 lines
14 KiB
Python

"""
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import annotations
import re
from functools import partial
import paddle
from paddle import nn
from paddleformers.transformers import PretrainedModel
from paddleformers.utils.log import logger
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.graph_optimization.decorator import (
support_graph_optimization,
)
from fastdeploy.model_executor.layers.attention.attention import Attention
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
from fastdeploy.model_executor.layers.linear import QKVParallelLinear, RowParallelLinear
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
from fastdeploy.model_executor.layers.normalization import RMSNorm
from fastdeploy.model_executor.models.model_base import (
ModelCategory,
ModelForCasualLM,
ModelRegistry,
)
from fastdeploy.model_executor.models.qwen2 import Qwen2DecoderLayer, Qwen2MLP
from fastdeploy.transformer_utils.config import get_pooling_config
class Qwen3MLP(Qwen2MLP):
""" """
pass
class Qwen3Attention(nn.Layer):
""" """
def __init__(self, fd_config: FDConfig, layer_id: int, prefix: str = "") -> None:
super().__init__()
self.fd_config = fd_config
self.head_dim = fd_config.model_config.head_dim
self.qkv_proj = QKVParallelLinear(fd_config, prefix=f"{prefix}.qkv_proj", with_bias=False)
nranks = fd_config.parallel_config.tensor_parallel_size
self.o_proj = RowParallelLinear(
fd_config,
prefix=f"{prefix}.o_proj",
input_size=fd_config.model_config.head_dim * fd_config.model_config.num_attention_heads,
output_size=fd_config.model_config.hidden_size,
)
self.attn = Attention(
fd_config,
layer_id=layer_id,
prefix=prefix,
use_neox_rotary_style=True,
)
self.q_norm = RMSNorm(
fd_config,
hidden_size=self.head_dim,
eps=fd_config.model_config.rms_norm_eps,
prefix=f"{prefix}.q_norm",
begin_norm_axis=2,
)
self.k_norm = RMSNorm(
fd_config,
hidden_size=self.head_dim,
eps=fd_config.model_config.rms_norm_eps,
prefix=f"{prefix}.k_norm",
begin_norm_axis=2,
)
nranks = fd_config.parallel_config.tensor_parallel_size
num_kv_heads_replicas = max(1, nranks // fd_config.model_config.num_key_value_heads)
self.q_size = fd_config.model_config.num_attention_heads * self.head_dim // nranks
self.kv_size = fd_config.model_config.num_key_value_heads * self.head_dim * num_kv_heads_replicas // nranks
def load_state_dict(self, state_dict):
""" """
self.qkv_proj.load_state_dict(state_dict)
self.o_proj.load_state_dict(state_dict)
self.q_norm.load_state_dict(state_dict)
self.k_norm.load_state_dict(state_dict)
self.attn.load_state_dict(state_dict)
def forward(
self,
forward_meta: ForwardMeta,
hidden_states: paddle.Tensor,
):
""" """
qkv_out = self.qkv_proj(hidden_states)
# origin_qkv_out = qkv_out
q, k, v = qkv_out.split([self.q_size, self.kv_size, self.kv_size], axis=-1)
q_by_head = q.reshape([*q.shape[:-1], q.shape[-1] // self.head_dim, self.head_dim])
q_by_head = self.q_norm(q_by_head)
q = q_by_head.reshape(q.shape)
k_by_head = k.reshape([*k.shape[:-1], k.shape[-1] // self.head_dim, self.head_dim])
k_by_head = self.k_norm(k_by_head)
k = k_by_head.reshape(k.shape)
qkv_out = paddle.concat([q, k, v], axis=-1)
atten_out = self.attn(
qkv=qkv_out,
forward_meta=forward_meta,
)
output = self.o_proj(atten_out)
return output
class Qwen3DecoderLayer(Qwen2DecoderLayer):
""" """
def __init__(
self,
fd_config: FDConfig,
prefix: str = "",
) -> None:
super().__init__(fd_config, prefix)
layer_id = int(prefix.split(sep=".")[-1])
self.self_attn = Qwen3Attention(fd_config=fd_config, layer_id=layer_id, prefix=f"{prefix}.self_attn")
@support_graph_optimization
class Qwen3Model(nn.Layer):
""" """
def __init__(
self,
fd_config: FDConfig = None,
):
"""
Initializer for the Qwen3Model class.
Args:
"""
super().__init__()
self.num_layers = fd_config.model_config.num_hidden_layers
fd_config.model_config.pretrained_config.prefix_name = "model"
self.embed_tokens = VocabParallelEmbedding(
fd_config=fd_config,
num_embeddings=fd_config.model_config.vocab_size,
embedding_dim=fd_config.model_config.hidden_size,
params_dtype=paddle.get_default_dtype,
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
)
self.layers = nn.LayerList(
[
Qwen3DecoderLayer(
fd_config=fd_config,
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}",
)
for i in range(self.num_layers)
]
)
self.norm = RMSNorm(
fd_config,
hidden_size=fd_config.model_config.hidden_size,
eps=fd_config.model_config.rms_norm_eps,
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
)
def load_state_dict(self, state_dict):
"""
Load model parameters from a given state dictionary.
Args:
state_dict (dict[str, np.ndarray | paddle.Tensor]):
A dictionary containing model parameters, where keys are parameter names
and values are NumPy arrays or PaddlePaddle tensors.
"""
self.embed_tokens.load_state_dict(state_dict)
self.norm.load_state_dict(state_dict)
for i in range(self.num_layers):
logger.info(f"Start load layer {i}")
self.layers[i].load_state_dict(state_dict)
def forward(
self,
ids_remove_padding: paddle.Tensor,
forward_meta: ForwardMeta,
):
""" """
hidden_states = self.embed_tokens(ids_remove_padding=ids_remove_padding)
residual = None
for i in range(self.num_layers):
hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual)
hidden_states = hidden_states + residual
out = self.norm(hidden_states)
return out
@ModelRegistry.register_model_class(
architecture="Qwen3ForCausalLM",
module_name="qwen3",
category=[ModelCategory.TEXT_GENERATION],
primary_use=ModelCategory.TEXT_GENERATION,
)
class Qwen3ForCausalLM(ModelForCasualLM):
"""
Qwen3ForCausalLM
"""
def __init__(self, fd_config: FDConfig):
"""
Args:
fd_config (FDConfig): Configurations for the LLM model.
"""
super(Qwen3ForCausalLM, self).__init__(fd_config)
self.fd_config = fd_config
self.model = Qwen3Model(fd_config=fd_config)
self.ori_vocab_size = fd_config.model_config.ori_vocab_size
self.tie_word_embeddings = fd_config.model_config.tie_word_embeddings
self.lm_head = ParallelLMHead(
fd_config=fd_config,
embedding_dim=fd_config.model_config.hidden_size,
num_embeddings=fd_config.model_config.vocab_size,
prefix="lm_head",
)
@classmethod
def name(self):
""" """
return "Qwen3ForCausalLM"
@paddle.no_grad()
def load_weights(self, weights_iterator) -> None:
"""
Load model parameters from a given weights_iterator object.
Args:
weights_iterator (Iterator): An iterator yielding (name, weight) pairs.
"""
from fastdeploy.model_executor.utils import (
default_weight_loader,
process_weights_after_loading,
)
is_pooling_model = hasattr(self, "is_pooling_model") and self.is_pooling_model
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("up_gate_proj", "gate_proj", "gate"),
("up_gate_proj", "up_proj", "up"),
("embed_tokens.embeddings", "embed_tokens", None),
("lm_head.linear", "lm_head", None),
]
params_dict = dict(self.named_parameters())
model_path = self.fd_config.model_config.model
revision = self.fd_config.model_config.revision
if is_pooling_model and get_pooling_config(model_path, revision):
params_dict = {
param_name[6:] if param_name.startswith("model.") else param_name: param
for param_name, param in params_dict.items()
}
process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers()))
for loaded_weight_name, loaded_weight in weights_iterator:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in loaded_weight_name:
continue
model_param_name = loaded_weight_name.replace(weight_name, param_name)
if model_param_name not in params_dict:
continue
param = params_dict[model_param_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
weight_loader(param, loaded_weight, shard_id)
break
else:
model_param_name = loaded_weight_name
if model_param_name not in params_dict:
continue
param = params_dict[model_param_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
weight_loader(param, loaded_weight)
model_sublayer_name = re.sub(r"\.(weight)$", "", model_param_name)
process_weights_after_loading_fn(model_sublayer_name, param)
if self.tie_word_embeddings and not is_pooling_model:
self.lm_head.load_state_dict({self.lm_head.weight_key: self.model.embed_tokens.embeddings.weight})
@paddle.no_grad()
def set_state_dict(self, state_dict):
"""
Load model parameters from a given state dictionary.
Args:
state_dict (dict[str, np.ndarray | paddle.Tensor]):
A dictionary containing model parameters, where keys are parameter names
and values are NumPy arrays or PaddlePaddle tensors.
"""
self.model.load_state_dict(state_dict)
if self.tie_word_embeddings:
self.lm_head.load_state_dict({self.lm_head.weight_key: self.model.embed_tokens.embeddings.weight})
else:
self.lm_head.load_state_dict(state_dict)
def compute_logits(self, hidden_states: paddle.Tensor):
""" """
logits = self.lm_head(hidden_states)
logits = logits.astype(paddle.float32)
logits[:, self.ori_vocab_size :] = -float("inf")
return logits
def forward(
self,
ids_remove_padding: paddle.Tensor,
forward_meta: ForwardMeta,
):
""" """
hidden_states = self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta)
return hidden_states
def clear_grpah_opt_backend(self):
"""Clear graph optimization backend, the captured cuda graph will be cleaned"""
self.model.clear_grpah_opt_backend(fd_config=self.fd_config)
class Qwen3PretrainedModel(PretrainedModel):
"""
Qwen3PretrainedModel
"""
config_class = FDConfig
def _init_weight(self, layer):
"""
_init_weight
"""
return None
@classmethod
def arch_name(self):
return "Qwen3ForCausalLM"
@classmethod
def _get_tensor_parallel_mappings(cls, config, is_split=True):
from paddleformers.transformers.conversion_utils import split_or_merge_func
fn = split_or_merge_func(
is_split=is_split,
tensor_parallel_degree=config.tensor_parallel_degree,
tensor_parallel_rank=config.tensor_parallel_rank,
num_attention_heads=config.num_attention_heads,
)
def get_tensor_parallel_split_mappings(num_layers):
final_actions = {}
base_actions = {
# Row Linear
"lm_head.weight": partial(fn, is_column=True),
"embed_tokens.weight": partial(fn, is_column=False),
"layers.0.self_attn.o_proj.weight": partial(fn, is_column=False),
"layers.0.mlp.down_proj.weight": partial(fn, is_column=False),
}
# Column Linear
base_actions["layers.0.self_attn.q_proj.weight"] = partial(fn, is_column=True)
base_actions["layers.0.self_attn.q_proj.bias"] = partial(fn, is_column=True)
# if we have enough num_key_value_heads to split, then split it.
if config.num_key_value_heads % config.tensor_parallel_degree == 0:
base_actions["layers.0.self_attn.k_proj.weight"] = partial(fn, is_column=True)
base_actions["layers.0.self_attn.v_proj.weight"] = partial(fn, is_column=True)
base_actions["layers.0.mlp.gate_proj.weight"] = partial(fn, is_column=True)
base_actions["layers.0.mlp.up_proj.weight"] = partial(fn, is_column=True)
for key, action in base_actions.items():
if "layers.0." in key:
for i in range(num_layers):
final_actions[key.replace("layers.0.", f"layers.{i}.")] = action
final_actions[key] = action
return final_actions
mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers)
return mappings