""" # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from __future__ import annotations import re from functools import partial import paddle from paddle import nn from paddleformers.transformers import PretrainedModel from paddleformers.utils.log import logger from fastdeploy.config import FDConfig from fastdeploy.model_executor.forward_meta import ForwardMeta from fastdeploy.model_executor.graph_optimization.decorator import ( support_graph_optimization, ) from fastdeploy.model_executor.layers.attention.attention import Attention from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding from fastdeploy.model_executor.layers.linear import QKVParallelLinear, RowParallelLinear from fastdeploy.model_executor.layers.lm_head import ParallelLMHead from fastdeploy.model_executor.layers.normalization import RMSNorm from fastdeploy.model_executor.models.model_base import ( ModelCategory, ModelForCasualLM, ModelRegistry, ) from fastdeploy.model_executor.models.qwen2 import Qwen2DecoderLayer, Qwen2MLP from fastdeploy.transformer_utils.config import get_pooling_config class Qwen3MLP(Qwen2MLP): """ """ pass class Qwen3Attention(nn.Layer): """ """ def __init__(self, fd_config: FDConfig, layer_id: int, prefix: str = "") -> None: super().__init__() self.fd_config = fd_config self.head_dim = fd_config.model_config.head_dim self.qkv_proj = QKVParallelLinear(fd_config, prefix=f"{prefix}.qkv_proj", with_bias=False) nranks = fd_config.parallel_config.tensor_parallel_size self.o_proj = RowParallelLinear( fd_config, prefix=f"{prefix}.o_proj", input_size=fd_config.model_config.head_dim * fd_config.model_config.num_attention_heads, output_size=fd_config.model_config.hidden_size, ) self.attn = Attention( fd_config, layer_id=layer_id, prefix=prefix, use_neox_rotary_style=True, ) self.q_norm = RMSNorm( fd_config, hidden_size=self.head_dim, eps=fd_config.model_config.rms_norm_eps, prefix=f"{prefix}.q_norm", begin_norm_axis=2, ) self.k_norm = RMSNorm( fd_config, hidden_size=self.head_dim, eps=fd_config.model_config.rms_norm_eps, prefix=f"{prefix}.k_norm", begin_norm_axis=2, ) nranks = fd_config.parallel_config.tensor_parallel_size num_kv_heads_replicas = max(1, nranks // fd_config.model_config.num_key_value_heads) self.q_size = fd_config.model_config.num_attention_heads * self.head_dim // nranks self.kv_size = fd_config.model_config.num_key_value_heads * self.head_dim * num_kv_heads_replicas // nranks def load_state_dict(self, state_dict): """ """ self.qkv_proj.load_state_dict(state_dict) self.o_proj.load_state_dict(state_dict) self.q_norm.load_state_dict(state_dict) self.k_norm.load_state_dict(state_dict) self.attn.load_state_dict(state_dict) def forward( self, forward_meta: ForwardMeta, hidden_states: paddle.Tensor, ): """ """ qkv_out = self.qkv_proj(hidden_states) # origin_qkv_out = qkv_out q, k, v = qkv_out.split([self.q_size, self.kv_size, self.kv_size], axis=-1) q_by_head = q.reshape([*q.shape[:-1], q.shape[-1] // self.head_dim, self.head_dim]) q_by_head = self.q_norm(q_by_head) q = q_by_head.reshape(q.shape) k_by_head = k.reshape([*k.shape[:-1], k.shape[-1] // self.head_dim, self.head_dim]) k_by_head = self.k_norm(k_by_head) k = k_by_head.reshape(k.shape) qkv_out = paddle.concat([q, k, v], axis=-1) atten_out = self.attn( qkv=qkv_out, forward_meta=forward_meta, ) output = self.o_proj(atten_out) return output class Qwen3DecoderLayer(Qwen2DecoderLayer): """ """ def __init__( self, fd_config: FDConfig, prefix: str = "", ) -> None: super().__init__(fd_config, prefix) layer_id = int(prefix.split(sep=".")[-1]) self.self_attn = Qwen3Attention(fd_config=fd_config, layer_id=layer_id, prefix=f"{prefix}.self_attn") @support_graph_optimization class Qwen3Model(nn.Layer): """ """ def __init__( self, fd_config: FDConfig = None, ): """ Initializer for the Qwen3Model class. Args: """ super().__init__() self.num_layers = fd_config.model_config.num_hidden_layers fd_config.model_config.pretrained_config.prefix_name = "model" self.embed_tokens = VocabParallelEmbedding( fd_config=fd_config, num_embeddings=fd_config.model_config.vocab_size, embedding_dim=fd_config.model_config.hidden_size, params_dtype=paddle.get_default_dtype, prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"), ) self.layers = nn.LayerList( [ Qwen3DecoderLayer( fd_config=fd_config, prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}", ) for i in range(self.num_layers) ] ) self.norm = RMSNorm( fd_config, hidden_size=fd_config.model_config.hidden_size, eps=fd_config.model_config.rms_norm_eps, prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm", ) def load_state_dict(self, state_dict): """ Load model parameters from a given state dictionary. Args: state_dict (dict[str, np.ndarray | paddle.Tensor]): A dictionary containing model parameters, where keys are parameter names and values are NumPy arrays or PaddlePaddle tensors. """ self.embed_tokens.load_state_dict(state_dict) self.norm.load_state_dict(state_dict) for i in range(self.num_layers): logger.info(f"Start load layer {i}") self.layers[i].load_state_dict(state_dict) def forward( self, ids_remove_padding: paddle.Tensor, forward_meta: ForwardMeta, ): """ """ hidden_states = self.embed_tokens(ids_remove_padding=ids_remove_padding) residual = None for i in range(self.num_layers): hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual) hidden_states = hidden_states + residual out = self.norm(hidden_states) return out @ModelRegistry.register_model_class( architecture="Qwen3ForCausalLM", module_name="qwen3", category=[ModelCategory.TEXT_GENERATION], primary_use=ModelCategory.TEXT_GENERATION, ) class Qwen3ForCausalLM(ModelForCasualLM): """ Qwen3ForCausalLM """ def __init__(self, fd_config: FDConfig): """ Args: fd_config (FDConfig): Configurations for the LLM model. """ super(Qwen3ForCausalLM, self).__init__(fd_config) self.fd_config = fd_config self.model = Qwen3Model(fd_config=fd_config) self.ori_vocab_size = fd_config.model_config.ori_vocab_size self.tie_word_embeddings = fd_config.model_config.tie_word_embeddings self.lm_head = ParallelLMHead( fd_config=fd_config, embedding_dim=fd_config.model_config.hidden_size, num_embeddings=fd_config.model_config.vocab_size, prefix="lm_head", ) @classmethod def name(self): """ """ return "Qwen3ForCausalLM" @paddle.no_grad() def load_weights(self, weights_iterator) -> None: """ Load model parameters from a given weights_iterator object. Args: weights_iterator (Iterator): An iterator yielding (name, weight) pairs. """ from fastdeploy.model_executor.utils import ( default_weight_loader, process_weights_after_loading, ) is_pooling_model = hasattr(self, "is_pooling_model") and self.is_pooling_model stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("up_gate_proj", "gate_proj", "gate"), ("up_gate_proj", "up_proj", "up"), ("embed_tokens.embeddings", "embed_tokens", None), ("lm_head.linear", "lm_head", None), ] params_dict = dict(self.named_parameters()) model_path = self.fd_config.model_config.model revision = self.fd_config.model_config.revision if is_pooling_model and get_pooling_config(model_path, revision): params_dict = { param_name[6:] if param_name.startswith("model.") else param_name: param for param_name, param in params_dict.items() } process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers())) for loaded_weight_name, loaded_weight in weights_iterator: for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in loaded_weight_name: continue model_param_name = loaded_weight_name.replace(weight_name, param_name) if model_param_name not in params_dict: continue param = params_dict[model_param_name] weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config)) weight_loader(param, loaded_weight, shard_id) break else: model_param_name = loaded_weight_name if model_param_name not in params_dict: continue param = params_dict[model_param_name] weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config)) weight_loader(param, loaded_weight) model_sublayer_name = re.sub(r"\.(weight)$", "", model_param_name) process_weights_after_loading_fn(model_sublayer_name, param) if self.tie_word_embeddings and not is_pooling_model: self.lm_head.load_state_dict({self.lm_head.weight_key: self.model.embed_tokens.embeddings.weight}) @paddle.no_grad() def set_state_dict(self, state_dict): """ Load model parameters from a given state dictionary. Args: state_dict (dict[str, np.ndarray | paddle.Tensor]): A dictionary containing model parameters, where keys are parameter names and values are NumPy arrays or PaddlePaddle tensors. """ self.model.load_state_dict(state_dict) if self.tie_word_embeddings: self.lm_head.load_state_dict({self.lm_head.weight_key: self.model.embed_tokens.embeddings.weight}) else: self.lm_head.load_state_dict(state_dict) def compute_logits(self, hidden_states: paddle.Tensor): """ """ logits = self.lm_head(hidden_states) logits = logits.astype(paddle.float32) logits[:, self.ori_vocab_size :] = -float("inf") return logits def forward( self, ids_remove_padding: paddle.Tensor, forward_meta: ForwardMeta, ): """ """ hidden_states = self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta) return hidden_states def clear_grpah_opt_backend(self): """Clear graph optimization backend, the captured cuda graph will be cleaned""" self.model.clear_grpah_opt_backend(fd_config=self.fd_config) class Qwen3PretrainedModel(PretrainedModel): """ Qwen3PretrainedModel """ config_class = FDConfig def _init_weight(self, layer): """ _init_weight """ return None @classmethod def arch_name(self): return "Qwen3ForCausalLM" @classmethod def _get_tensor_parallel_mappings(cls, config, is_split=True): from paddleformers.transformers.conversion_utils import split_or_merge_func fn = split_or_merge_func( is_split=is_split, tensor_parallel_degree=config.tensor_parallel_degree, tensor_parallel_rank=config.tensor_parallel_rank, num_attention_heads=config.num_attention_heads, ) def get_tensor_parallel_split_mappings(num_layers): final_actions = {} base_actions = { # Row Linear "lm_head.weight": partial(fn, is_column=True), "embed_tokens.weight": partial(fn, is_column=False), "layers.0.self_attn.o_proj.weight": partial(fn, is_column=False), "layers.0.mlp.down_proj.weight": partial(fn, is_column=False), } # Column Linear base_actions["layers.0.self_attn.q_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.q_proj.bias"] = partial(fn, is_column=True) # if we have enough num_key_value_heads to split, then split it. if config.num_key_value_heads % config.tensor_parallel_degree == 0: base_actions["layers.0.self_attn.k_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.v_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.mlp.gate_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.mlp.up_proj.weight"] = partial(fn, is_column=True) for key, action in base_actions.items(): if "layers.0." in key: for i in range(num_layers): final_actions[key.replace("layers.0.", f"layers.{i}.")] = action final_actions[key] = action return final_actions mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers) return mappings