Files
FastDeploy/examples/application/js/mini_program/README_en.md
Double_V 9339d52cea [Doc] add en readme for js (#479)
* add contributor

* add package readme

* refine ocr readme

* refine ocr readme

* add en readme about js

* fix bugs

* refine doc
2022-11-03 15:16:35 +08:00

125 lines
4.7 KiB
Markdown

English | [中文](README.md)
# Paddle.js WeChat mini-program Demo
- [1. Introduction](#1)
- [2. Project Start](#2)
* [2.1 Preparations](#21)
* [2.2 Startup steps](#22)
* [2.3 visualization](#23)
- [3. Model inference pipeline](#3)
- [4. FAQ](#4)
<a name="1"></a>
## 1 Introduction
This directory contains the text detection, text recognition mini-program demo, by using [Paddle.js](https://github.com/PaddlePaddle/Paddle.js) and [Paddle.js WeChat mini-program plugin](https://mp.weixin.qq.com/wxopen/plugindevdoc?appid=wx7138a7bb793608c3&token=956931339&lang=zh_CN) to complete the text detection frame selection effect on the mini-program using the computing power of the user terminal.
<a name="2"></a>
## 2. Project start
<a name="21"></a>
### 2.1 Preparations
* [Apply for a WeChat mini-program account](https://mp.weixin.qq.com/)
* [WeChat Mini Program Developer Tools](https://developers.weixin.qq.com/miniprogram/dev/devtools/download.html)
* Front-end development environment preparation: node, npm
* Configure the server domain name in the mini-program management background, or open the developer tool [do not verify the legal domain name]
For details, please refer to [document.](https://mp.weixin.qq.com/wxamp/devprofile/get_profile?token=1132303404&lang=zh_CN)
<a name="22"></a>
### 2.2 Startup steps
#### **1. Clone the demo code**
````sh
git clone https://github.com/PaddlePaddle/FastDeploy
cd FastDeploy/examples/application/js/mini_program
````
#### **2. Enter the mini-program directory and install dependencies**
````sh
# Run the text recognition demo and enter the ocrXcx directory
cd ./ocrXcx && npm install
# Run the text detection demo and enter the ocrdetectXcx directory
# cd ./ocrdetectXcx && npm install
````
#### **3. WeChat mini-program import code**
Open WeChat Developer Tools --> Import --> Select a directory and enter relevant information
#### **4. Add Paddle.js WeChat mini-program plugin**
Mini Program Management Interface --> Settings --> Third Party Settings --> Plugin Management --> Add Plugins --> Search for `wx7138a7bb793608c3` and add
[Reference document](https://developers.weixin.qq.com/miniprogram/dev/framework/plugin/using.html)
#### **5. Build dependencies**
Click on the menu bar in the developer tools: Tools --> Build npm
Reason: The node_modules directory will not be involved in compiling, uploading and packaging. If a small program wants to use npm packages, it must go through the process of "building npm". After the construction is completed, a miniprogram_npm directory will be generated, which will store the built and packaged npm packages. It is the npm package that the mini-program actually uses. *
[Reference Documentation](https://developers.weixin.qq.com/miniprogram/dev/devtools/npm.html)
<a name="23"></a>
### 2.3 visualization
<img src="https://user-images.githubusercontent.com/43414102/157648579-cdbbee61-9866-4364-9edd-a97ac0eda0c1.png" width="300px">
<a name="3"></a>
## 3. Model inference pipeline
```typescript
// Introduce paddlejs and paddlejs-plugin, register the mini-program environment variables and the appropriate backend
import * as paddlejs from '@paddlejs/paddlejs-core';
import '@paddlejs/paddlejs-backend-webgl';
const plugin = requirePlugin('paddlejs-plugin');
plugin.register(paddlejs, wx);
// Initialize the inference engine
const runner = new paddlejs.Runner({modelPath, feedShape, mean, std});
await runner.init();
// get image information
wx.canvasGetImageData({
canvasId: canvasId,
x: 0,
y: 0,
width: canvas.width,
height: canvas.height,
success(res) {
// inference prediction
runner.predict({
data: res.data,
width: canvas.width,
height: canvas.height,
}, function (data) {
// get the inference result
console.log(data)
});
}
});
````
<a name="4"></a>
## 4. FAQ
- 4.1 An error occurs `Invalid context type [webgl2] for Canvas#getContext`
**A:** You can leave it alone, it will not affect the normal code operation and demo function
- 4.2 Preview can't see the result
**A:** It is recommended to try real machine debugging
- 4.3 A black screen appears in the WeChat developer tool, and then there are too many errors
**A:** Restart WeChat Developer Tools
- 4.4 The debugging results of the simulation and the real machine are inconsistent; the simulation cannot detect the text, etc.
**A:** The real machine can prevail;
If the simulation cannot detect the text, etc., you can try to change the code at will (add, delete, newline, etc.) and then click to compile
- 4.5 Prompts such as no response for a long time appear when the phone is debugged or running
**A:** Please continue to wait, model inference will take some time