Files
FastDeploy/fastdeploy/vision/detection/contrib/yolox.cc
WJJ1995 06908b8beb Add Benchmark test (#200)
* add ppcls benchmark

* add ppcls benchmark

* add ppcls benchmark

* add ppcls benchmark

* fixed txt path

* resolve conflict

* resolve conflict

* deal with comments

* Add enable_trt_fp16 option

* Add OV backend for seg and det

* fixed valid backends in ppdet

* fixed valid backends in yolo

* add copyright and rm Chinese Notes

* add ppdet&ppseg&yolo benchmark

* add cpu/gpu mem info

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-09-14 20:15:01 +08:00

340 lines
12 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolox.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace detection {
struct YOLOXAnchor {
int grid0;
int grid1;
int stride;
};
void GenerateYOLOXAnchors(const std::vector<int>& size,
const std::vector<int>& downsample_strides,
std::vector<YOLOXAnchor>* anchors) {
// size: tuple of input (width, height)
// downsample_strides: downsample strides in YOLOX, e.g (8,16,32)
const int width = size[0];
const int height = size[1];
for (const auto& ds : downsample_strides) {
int num_grid_w = width / ds;
int num_grid_h = height / ds;
for (int g1 = 0; g1 < num_grid_h; ++g1) {
for (int g0 = 0; g0 < num_grid_w; ++g0) {
(*anchors).emplace_back(YOLOXAnchor{g0, g1, ds});
}
}
}
}
void LetterBoxWithRightBottomPad(Mat* mat, std::vector<int> size,
std::vector<float> color) {
// specific pre process for YOLOX, not the same as YOLOv5
// reference: YOLOX/yolox/data/data_augment.py#L142
float r = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
size[0] * 1.0f / static_cast<float>(mat->Width()));
int resize_h = int(round(static_cast<float>(mat->Height()) * r));
int resize_w = int(round(static_cast<float>(mat->Width()) * r));
if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h);
}
int pad_w = size[0] - resize_w;
int pad_h = size[1] - resize_h;
// right-bottom padding for YOLOX
if (pad_h > 0 || pad_w > 0) {
int top = 0;
int left = 0;
int right = pad_w;
int bottom = pad_h;
Pad::Run(mat, top, bottom, left, right, color);
}
}
YOLOX::YOLOX(const std::string& model_file, const std::string& params_file,
const RuntimeOption& custom_option, const Frontend& model_format) {
if (model_format == Frontend::ONNX) {
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool YOLOX::Initialize() {
// parameters for preprocess
size = {640, 640};
padding_value = {114.0, 114.0, 114.0};
downsample_strides = {8, 16, 32};
max_wh = 4096.0f;
is_decode_exported = false;
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
// Check if the input shape is dynamic after Runtime already initialized.
is_dynamic_input_ = false;
auto shape = InputInfoOfRuntime(0).shape;
for (int i = 0; i < shape.size(); ++i) {
// if height or width is dynamic
if (i >= 2 && shape[i] <= 0) {
is_dynamic_input_ = true;
break;
}
}
return true;
}
bool YOLOX::Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
// YOLOX ( >= v0.1.1) preprocess steps
// 1. preproc
// 2. HWC->CHW
// 3. NO!!! BRG2GRB and Normalize needed in YOLOX
LetterBoxWithRightBottomPad(mat, size, padding_value);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
}
bool YOLOX::Postprocess(
FDTensor& infer_result, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold) {
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
result->Clear();
result->Reserve(infer_result.shape[1]);
if (infer_result.dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
float* data = static_cast<float*>(infer_result.Data());
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
int s = i * infer_result.shape[2];
float confidence = data[s + 4];
float* max_class_score =
std::max_element(data + s + 5, data + s + infer_result.shape[2]);
confidence *= (*max_class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold) {
continue;
}
int32_t label_id = std::distance(data + s + 5, max_class_score);
// convert from [x, y, w, h] to [x1, y1, x2, y2]
result->boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2.0f + label_id * max_wh,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh});
result->label_ids.push_back(label_id);
result->scores.push_back(confidence);
}
utils::NMS(result, nms_iou_threshold);
// scale the boxes to the origin image shape
auto iter_out = im_info.find("output_shape");
auto iter_ipt = im_info.find("input_shape");
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float r = std::min(out_h / ipt_h, out_w / ipt_w);
for (size_t i = 0; i < result->boxes.size(); ++i) {
int32_t label_id = (result->label_ids)[i];
// clip box
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
result->boxes[i][0] = std::max(result->boxes[i][0] / r, 0.0f);
result->boxes[i][1] = std::max(result->boxes[i][1] / r, 0.0f);
result->boxes[i][2] = std::max(result->boxes[i][2] / r, 0.0f);
result->boxes[i][3] = std::max(result->boxes[i][3] / r, 0.0f);
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
}
return true;
}
bool YOLOX::PostprocessWithDecode(
FDTensor& infer_result, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold) {
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
result->Clear();
result->Reserve(infer_result.shape[1]);
if (infer_result.dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
// generate anchors with dowmsample strides
std::vector<YOLOXAnchor> anchors;
GenerateYOLOXAnchors(size, downsample_strides, &anchors);
// infer_result shape might look like (1,n,85=5+80)
float* data = static_cast<float*>(infer_result.Data());
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
int s = i * infer_result.shape[2];
float confidence = data[s + 4];
float* max_class_score =
std::max_element(data + s + 5, data + s + infer_result.shape[2]);
confidence *= (*max_class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold) {
continue;
}
int32_t label_id = std::distance(data + s + 5, max_class_score);
// fetch i-th anchor
float grid0 = static_cast<float>(anchors.at(i).grid0);
float grid1 = static_cast<float>(anchors.at(i).grid1);
float downsample_stride = static_cast<float>(anchors.at(i).stride);
// convert from offsets to [x, y, w, h]
float dx = data[s];
float dy = data[s + 1];
float dw = data[s + 2];
float dh = data[s + 3];
float x = (dx + grid0) * downsample_stride;
float y = (dy + grid1) * downsample_stride;
float w = std::exp(dw) * downsample_stride;
float h = std::exp(dh) * downsample_stride;
// convert from [x, y, w, h] to [x1, y1, x2, y2]
result->boxes.emplace_back(std::array<float, 4>{
x - w / 2.0f + label_id * max_wh, y - h / 2.0f + label_id * max_wh,
x + w / 2.0f + label_id * max_wh, y + h / 2.0f + label_id * max_wh});
// label_id * max_wh for multi classes NMS
result->label_ids.push_back(label_id);
result->scores.push_back(confidence);
}
utils::NMS(result, nms_iou_threshold);
// scale the boxes to the origin image shape
auto iter_out = im_info.find("output_shape");
auto iter_ipt = im_info.find("input_shape");
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float r = std::min(out_h / ipt_h, out_w / ipt_w);
for (size_t i = 0; i < result->boxes.size(); ++i) {
int32_t label_id = (result->label_ids)[i];
// clip box
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
result->boxes[i][0] = std::max(result->boxes[i][0] / r, 0.0f);
result->boxes[i][1] = std::max(result->boxes[i][1] / r, 0.0f);
result->boxes[i][2] = std::max(result->boxes[i][2] / r, 0.0f);
result->boxes[i][3] = std::max(result->boxes[i][3] / r, 0.0f);
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
}
return true;
}
bool YOLOX::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
float nms_iou_threshold) {
#ifdef FASTDEPLOY_DEBUG
TIMERECORD_START(0)
#endif
Mat mat(*im);
std::vector<FDTensor> input_tensors(1);
std::map<std::string, std::array<float, 2>> im_info;
// Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
im_info["output_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
#ifdef FASTDEPLOY_DEBUG
TIMERECORD_END(0, "Preprocess")
TIMERECORD_START(1)
#endif
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
#ifdef FASTDEPLOY_DEBUG
TIMERECORD_END(1, "Inference")
TIMERECORD_START(2)
#endif
if (is_decode_exported) {
if (!Postprocess(output_tensors[0], result, im_info, conf_threshold,
nms_iou_threshold)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
} else {
if (!PostprocessWithDecode(output_tensors[0], result, im_info,
conf_threshold, nms_iou_threshold)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
}
#ifdef FASTDEPLOY_DEBUG
TIMERECORD_END(2, "Postprocess")
#endif
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy