mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* add ppcls benchmark * add ppcls benchmark * add ppcls benchmark * add ppcls benchmark * fixed txt path * resolve conflict * resolve conflict * deal with comments * Add enable_trt_fp16 option * Add OV backend for seg and det * fixed valid backends in ppdet * fixed valid backends in yolo * add copyright and rm Chinese Notes * add ppdet&ppseg&yolo benchmark * add cpu/gpu mem info Co-authored-by: Jason <jiangjiajun@baidu.com>
340 lines
12 KiB
C++
340 lines
12 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/detection/contrib/yolox.h"
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
namespace vision {
|
|
|
|
namespace detection {
|
|
|
|
struct YOLOXAnchor {
|
|
int grid0;
|
|
int grid1;
|
|
int stride;
|
|
};
|
|
|
|
void GenerateYOLOXAnchors(const std::vector<int>& size,
|
|
const std::vector<int>& downsample_strides,
|
|
std::vector<YOLOXAnchor>* anchors) {
|
|
// size: tuple of input (width, height)
|
|
// downsample_strides: downsample strides in YOLOX, e.g (8,16,32)
|
|
const int width = size[0];
|
|
const int height = size[1];
|
|
for (const auto& ds : downsample_strides) {
|
|
int num_grid_w = width / ds;
|
|
int num_grid_h = height / ds;
|
|
for (int g1 = 0; g1 < num_grid_h; ++g1) {
|
|
for (int g0 = 0; g0 < num_grid_w; ++g0) {
|
|
(*anchors).emplace_back(YOLOXAnchor{g0, g1, ds});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void LetterBoxWithRightBottomPad(Mat* mat, std::vector<int> size,
|
|
std::vector<float> color) {
|
|
// specific pre process for YOLOX, not the same as YOLOv5
|
|
// reference: YOLOX/yolox/data/data_augment.py#L142
|
|
float r = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
|
|
size[0] * 1.0f / static_cast<float>(mat->Width()));
|
|
|
|
int resize_h = int(round(static_cast<float>(mat->Height()) * r));
|
|
int resize_w = int(round(static_cast<float>(mat->Width()) * r));
|
|
|
|
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
|
Resize::Run(mat, resize_w, resize_h);
|
|
}
|
|
|
|
int pad_w = size[0] - resize_w;
|
|
int pad_h = size[1] - resize_h;
|
|
// right-bottom padding for YOLOX
|
|
if (pad_h > 0 || pad_w > 0) {
|
|
int top = 0;
|
|
int left = 0;
|
|
int right = pad_w;
|
|
int bottom = pad_h;
|
|
Pad::Run(mat, top, bottom, left, right, color);
|
|
}
|
|
}
|
|
|
|
YOLOX::YOLOX(const std::string& model_file, const std::string& params_file,
|
|
const RuntimeOption& custom_option, const Frontend& model_format) {
|
|
if (model_format == Frontend::ONNX) {
|
|
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
|
} else {
|
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
}
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool YOLOX::Initialize() {
|
|
// parameters for preprocess
|
|
size = {640, 640};
|
|
padding_value = {114.0, 114.0, 114.0};
|
|
downsample_strides = {8, 16, 32};
|
|
max_wh = 4096.0f;
|
|
is_decode_exported = false;
|
|
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
// Check if the input shape is dynamic after Runtime already initialized.
|
|
is_dynamic_input_ = false;
|
|
auto shape = InputInfoOfRuntime(0).shape;
|
|
for (int i = 0; i < shape.size(); ++i) {
|
|
// if height or width is dynamic
|
|
if (i >= 2 && shape[i] <= 0) {
|
|
is_dynamic_input_ = true;
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool YOLOX::Preprocess(Mat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<float, 2>>* im_info) {
|
|
// YOLOX ( >= v0.1.1) preprocess steps
|
|
// 1. preproc
|
|
// 2. HWC->CHW
|
|
// 3. NO!!! BRG2GRB and Normalize needed in YOLOX
|
|
LetterBoxWithRightBottomPad(mat, size, padding_value);
|
|
// Record output shape of preprocessed image
|
|
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
|
|
static_cast<float>(mat->Width())};
|
|
|
|
HWC2CHW::Run(mat);
|
|
Cast::Run(mat, "float");
|
|
mat->ShareWithTensor(output);
|
|
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
|
|
return true;
|
|
}
|
|
|
|
bool YOLOX::Postprocess(
|
|
FDTensor& infer_result, DetectionResult* result,
|
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
|
float conf_threshold, float nms_iou_threshold) {
|
|
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
|
|
result->Clear();
|
|
result->Reserve(infer_result.shape[1]);
|
|
if (infer_result.dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
float* data = static_cast<float*>(infer_result.Data());
|
|
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
|
|
int s = i * infer_result.shape[2];
|
|
float confidence = data[s + 4];
|
|
float* max_class_score =
|
|
std::max_element(data + s + 5, data + s + infer_result.shape[2]);
|
|
confidence *= (*max_class_score);
|
|
// filter boxes by conf_threshold
|
|
if (confidence <= conf_threshold) {
|
|
continue;
|
|
}
|
|
int32_t label_id = std::distance(data + s + 5, max_class_score);
|
|
// convert from [x, y, w, h] to [x1, y1, x2, y2]
|
|
result->boxes.emplace_back(std::array<float, 4>{
|
|
data[s] - data[s + 2] / 2.0f + label_id * max_wh,
|
|
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh,
|
|
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh,
|
|
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh});
|
|
result->label_ids.push_back(label_id);
|
|
result->scores.push_back(confidence);
|
|
}
|
|
utils::NMS(result, nms_iou_threshold);
|
|
|
|
// scale the boxes to the origin image shape
|
|
auto iter_out = im_info.find("output_shape");
|
|
auto iter_ipt = im_info.find("input_shape");
|
|
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
|
|
"Cannot find input_shape or output_shape from im_info.");
|
|
float out_h = iter_out->second[0];
|
|
float out_w = iter_out->second[1];
|
|
float ipt_h = iter_ipt->second[0];
|
|
float ipt_w = iter_ipt->second[1];
|
|
float r = std::min(out_h / ipt_h, out_w / ipt_w);
|
|
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
|
int32_t label_id = (result->label_ids)[i];
|
|
// clip box
|
|
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
|
|
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
|
|
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
|
|
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
|
|
result->boxes[i][0] = std::max(result->boxes[i][0] / r, 0.0f);
|
|
result->boxes[i][1] = std::max(result->boxes[i][1] / r, 0.0f);
|
|
result->boxes[i][2] = std::max(result->boxes[i][2] / r, 0.0f);
|
|
result->boxes[i][3] = std::max(result->boxes[i][3] / r, 0.0f);
|
|
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
|
|
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
|
|
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
|
|
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool YOLOX::PostprocessWithDecode(
|
|
FDTensor& infer_result, DetectionResult* result,
|
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
|
float conf_threshold, float nms_iou_threshold) {
|
|
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
|
|
result->Clear();
|
|
result->Reserve(infer_result.shape[1]);
|
|
if (infer_result.dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
// generate anchors with dowmsample strides
|
|
std::vector<YOLOXAnchor> anchors;
|
|
GenerateYOLOXAnchors(size, downsample_strides, &anchors);
|
|
|
|
// infer_result shape might look like (1,n,85=5+80)
|
|
float* data = static_cast<float*>(infer_result.Data());
|
|
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
|
|
int s = i * infer_result.shape[2];
|
|
float confidence = data[s + 4];
|
|
float* max_class_score =
|
|
std::max_element(data + s + 5, data + s + infer_result.shape[2]);
|
|
confidence *= (*max_class_score);
|
|
// filter boxes by conf_threshold
|
|
if (confidence <= conf_threshold) {
|
|
continue;
|
|
}
|
|
int32_t label_id = std::distance(data + s + 5, max_class_score);
|
|
// fetch i-th anchor
|
|
float grid0 = static_cast<float>(anchors.at(i).grid0);
|
|
float grid1 = static_cast<float>(anchors.at(i).grid1);
|
|
float downsample_stride = static_cast<float>(anchors.at(i).stride);
|
|
// convert from offsets to [x, y, w, h]
|
|
float dx = data[s];
|
|
float dy = data[s + 1];
|
|
float dw = data[s + 2];
|
|
float dh = data[s + 3];
|
|
|
|
float x = (dx + grid0) * downsample_stride;
|
|
float y = (dy + grid1) * downsample_stride;
|
|
float w = std::exp(dw) * downsample_stride;
|
|
float h = std::exp(dh) * downsample_stride;
|
|
|
|
// convert from [x, y, w, h] to [x1, y1, x2, y2]
|
|
result->boxes.emplace_back(std::array<float, 4>{
|
|
x - w / 2.0f + label_id * max_wh, y - h / 2.0f + label_id * max_wh,
|
|
x + w / 2.0f + label_id * max_wh, y + h / 2.0f + label_id * max_wh});
|
|
// label_id * max_wh for multi classes NMS
|
|
result->label_ids.push_back(label_id);
|
|
result->scores.push_back(confidence);
|
|
}
|
|
utils::NMS(result, nms_iou_threshold);
|
|
|
|
// scale the boxes to the origin image shape
|
|
auto iter_out = im_info.find("output_shape");
|
|
auto iter_ipt = im_info.find("input_shape");
|
|
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
|
|
"Cannot find input_shape or output_shape from im_info.");
|
|
float out_h = iter_out->second[0];
|
|
float out_w = iter_out->second[1];
|
|
float ipt_h = iter_ipt->second[0];
|
|
float ipt_w = iter_ipt->second[1];
|
|
float r = std::min(out_h / ipt_h, out_w / ipt_w);
|
|
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
|
int32_t label_id = (result->label_ids)[i];
|
|
// clip box
|
|
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
|
|
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
|
|
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
|
|
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
|
|
result->boxes[i][0] = std::max(result->boxes[i][0] / r, 0.0f);
|
|
result->boxes[i][1] = std::max(result->boxes[i][1] / r, 0.0f);
|
|
result->boxes[i][2] = std::max(result->boxes[i][2] / r, 0.0f);
|
|
result->boxes[i][3] = std::max(result->boxes[i][3] / r, 0.0f);
|
|
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
|
|
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
|
|
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
|
|
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool YOLOX::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
|
|
float nms_iou_threshold) {
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
TIMERECORD_START(0)
|
|
#endif
|
|
|
|
Mat mat(*im);
|
|
std::vector<FDTensor> input_tensors(1);
|
|
|
|
std::map<std::string, std::array<float, 2>> im_info;
|
|
|
|
// Record the shape of image and the shape of preprocessed image
|
|
im_info["input_shape"] = {static_cast<float>(mat.Height()),
|
|
static_cast<float>(mat.Width())};
|
|
im_info["output_shape"] = {static_cast<float>(mat.Height()),
|
|
static_cast<float>(mat.Width())};
|
|
|
|
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
|
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
TIMERECORD_END(0, "Preprocess")
|
|
TIMERECORD_START(1)
|
|
#endif
|
|
|
|
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
|
std::vector<FDTensor> output_tensors;
|
|
if (!Infer(input_tensors, &output_tensors)) {
|
|
FDERROR << "Failed to inference." << std::endl;
|
|
return false;
|
|
}
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
TIMERECORD_END(1, "Inference")
|
|
TIMERECORD_START(2)
|
|
#endif
|
|
|
|
if (is_decode_exported) {
|
|
if (!Postprocess(output_tensors[0], result, im_info, conf_threshold,
|
|
nms_iou_threshold)) {
|
|
FDERROR << "Failed to post process." << std::endl;
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!PostprocessWithDecode(output_tensors[0], result, im_info,
|
|
conf_threshold, nms_iou_threshold)) {
|
|
FDERROR << "Failed to post process." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
TIMERECORD_END(2, "Postprocess")
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|