// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/detection/contrib/yolox.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/utils/utils.h" namespace fastdeploy { namespace vision { namespace detection { struct YOLOXAnchor { int grid0; int grid1; int stride; }; void GenerateYOLOXAnchors(const std::vector& size, const std::vector& downsample_strides, std::vector* anchors) { // size: tuple of input (width, height) // downsample_strides: downsample strides in YOLOX, e.g (8,16,32) const int width = size[0]; const int height = size[1]; for (const auto& ds : downsample_strides) { int num_grid_w = width / ds; int num_grid_h = height / ds; for (int g1 = 0; g1 < num_grid_h; ++g1) { for (int g0 = 0; g0 < num_grid_w; ++g0) { (*anchors).emplace_back(YOLOXAnchor{g0, g1, ds}); } } } } void LetterBoxWithRightBottomPad(Mat* mat, std::vector size, std::vector color) { // specific pre process for YOLOX, not the same as YOLOv5 // reference: YOLOX/yolox/data/data_augment.py#L142 float r = std::min(size[1] * 1.0f / static_cast(mat->Height()), size[0] * 1.0f / static_cast(mat->Width())); int resize_h = int(round(static_cast(mat->Height()) * r)); int resize_w = int(round(static_cast(mat->Width()) * r)); if (resize_h != mat->Height() || resize_w != mat->Width()) { Resize::Run(mat, resize_w, resize_h); } int pad_w = size[0] - resize_w; int pad_h = size[1] - resize_h; // right-bottom padding for YOLOX if (pad_h > 0 || pad_w > 0) { int top = 0; int left = 0; int right = pad_w; int bottom = pad_h; Pad::Run(mat, top, bottom, left, right, color); } } YOLOX::YOLOX(const std::string& model_file, const std::string& params_file, const RuntimeOption& custom_option, const Frontend& model_format) { if (model_format == Frontend::ONNX) { valid_cpu_backends = {Backend::OPENVINO, Backend::ORT}; valid_gpu_backends = {Backend::ORT, Backend::TRT}; } else { valid_cpu_backends = {Backend::PDINFER, Backend::ORT}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; } runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; runtime_option.params_file = params_file; initialized = Initialize(); } bool YOLOX::Initialize() { // parameters for preprocess size = {640, 640}; padding_value = {114.0, 114.0, 114.0}; downsample_strides = {8, 16, 32}; max_wh = 4096.0f; is_decode_exported = false; if (!InitRuntime()) { FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } // Check if the input shape is dynamic after Runtime already initialized. is_dynamic_input_ = false; auto shape = InputInfoOfRuntime(0).shape; for (int i = 0; i < shape.size(); ++i) { // if height or width is dynamic if (i >= 2 && shape[i] <= 0) { is_dynamic_input_ = true; break; } } return true; } bool YOLOX::Preprocess(Mat* mat, FDTensor* output, std::map>* im_info) { // YOLOX ( >= v0.1.1) preprocess steps // 1. preproc // 2. HWC->CHW // 3. NO!!! BRG2GRB and Normalize needed in YOLOX LetterBoxWithRightBottomPad(mat, size, padding_value); // Record output shape of preprocessed image (*im_info)["output_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; HWC2CHW::Run(mat); Cast::Run(mat, "float"); mat->ShareWithTensor(output); output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c return true; } bool YOLOX::Postprocess( FDTensor& infer_result, DetectionResult* result, const std::map>& im_info, float conf_threshold, float nms_iou_threshold) { FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now."); result->Clear(); result->Reserve(infer_result.shape[1]); if (infer_result.dtype != FDDataType::FP32) { FDERROR << "Only support post process with float32 data." << std::endl; return false; } float* data = static_cast(infer_result.Data()); for (size_t i = 0; i < infer_result.shape[1]; ++i) { int s = i * infer_result.shape[2]; float confidence = data[s + 4]; float* max_class_score = std::max_element(data + s + 5, data + s + infer_result.shape[2]); confidence *= (*max_class_score); // filter boxes by conf_threshold if (confidence <= conf_threshold) { continue; } int32_t label_id = std::distance(data + s + 5, max_class_score); // convert from [x, y, w, h] to [x1, y1, x2, y2] result->boxes.emplace_back(std::array{ data[s] - data[s + 2] / 2.0f + label_id * max_wh, data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh, data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh, data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh}); result->label_ids.push_back(label_id); result->scores.push_back(confidence); } utils::NMS(result, nms_iou_threshold); // scale the boxes to the origin image shape auto iter_out = im_info.find("output_shape"); auto iter_ipt = im_info.find("input_shape"); FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(), "Cannot find input_shape or output_shape from im_info."); float out_h = iter_out->second[0]; float out_w = iter_out->second[1]; float ipt_h = iter_ipt->second[0]; float ipt_w = iter_ipt->second[1]; float r = std::min(out_h / ipt_h, out_w / ipt_w); for (size_t i = 0; i < result->boxes.size(); ++i) { int32_t label_id = (result->label_ids)[i]; // clip box result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id; result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id; result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id; result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id; result->boxes[i][0] = std::max(result->boxes[i][0] / r, 0.0f); result->boxes[i][1] = std::max(result->boxes[i][1] / r, 0.0f); result->boxes[i][2] = std::max(result->boxes[i][2] / r, 0.0f); result->boxes[i][3] = std::max(result->boxes[i][3] / r, 0.0f); result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f); result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f); result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f); result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f); } return true; } bool YOLOX::PostprocessWithDecode( FDTensor& infer_result, DetectionResult* result, const std::map>& im_info, float conf_threshold, float nms_iou_threshold) { FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now."); result->Clear(); result->Reserve(infer_result.shape[1]); if (infer_result.dtype != FDDataType::FP32) { FDERROR << "Only support post process with float32 data." << std::endl; return false; } // generate anchors with dowmsample strides std::vector anchors; GenerateYOLOXAnchors(size, downsample_strides, &anchors); // infer_result shape might look like (1,n,85=5+80) float* data = static_cast(infer_result.Data()); for (size_t i = 0; i < infer_result.shape[1]; ++i) { int s = i * infer_result.shape[2]; float confidence = data[s + 4]; float* max_class_score = std::max_element(data + s + 5, data + s + infer_result.shape[2]); confidence *= (*max_class_score); // filter boxes by conf_threshold if (confidence <= conf_threshold) { continue; } int32_t label_id = std::distance(data + s + 5, max_class_score); // fetch i-th anchor float grid0 = static_cast(anchors.at(i).grid0); float grid1 = static_cast(anchors.at(i).grid1); float downsample_stride = static_cast(anchors.at(i).stride); // convert from offsets to [x, y, w, h] float dx = data[s]; float dy = data[s + 1]; float dw = data[s + 2]; float dh = data[s + 3]; float x = (dx + grid0) * downsample_stride; float y = (dy + grid1) * downsample_stride; float w = std::exp(dw) * downsample_stride; float h = std::exp(dh) * downsample_stride; // convert from [x, y, w, h] to [x1, y1, x2, y2] result->boxes.emplace_back(std::array{ x - w / 2.0f + label_id * max_wh, y - h / 2.0f + label_id * max_wh, x + w / 2.0f + label_id * max_wh, y + h / 2.0f + label_id * max_wh}); // label_id * max_wh for multi classes NMS result->label_ids.push_back(label_id); result->scores.push_back(confidence); } utils::NMS(result, nms_iou_threshold); // scale the boxes to the origin image shape auto iter_out = im_info.find("output_shape"); auto iter_ipt = im_info.find("input_shape"); FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(), "Cannot find input_shape or output_shape from im_info."); float out_h = iter_out->second[0]; float out_w = iter_out->second[1]; float ipt_h = iter_ipt->second[0]; float ipt_w = iter_ipt->second[1]; float r = std::min(out_h / ipt_h, out_w / ipt_w); for (size_t i = 0; i < result->boxes.size(); ++i) { int32_t label_id = (result->label_ids)[i]; // clip box result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id; result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id; result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id; result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id; result->boxes[i][0] = std::max(result->boxes[i][0] / r, 0.0f); result->boxes[i][1] = std::max(result->boxes[i][1] / r, 0.0f); result->boxes[i][2] = std::max(result->boxes[i][2] / r, 0.0f); result->boxes[i][3] = std::max(result->boxes[i][3] / r, 0.0f); result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f); result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f); result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f); result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f); } return true; } bool YOLOX::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold, float nms_iou_threshold) { #ifdef FASTDEPLOY_DEBUG TIMERECORD_START(0) #endif Mat mat(*im); std::vector input_tensors(1); std::map> im_info; // Record the shape of image and the shape of preprocessed image im_info["input_shape"] = {static_cast(mat.Height()), static_cast(mat.Width())}; im_info["output_shape"] = {static_cast(mat.Height()), static_cast(mat.Width())}; if (!Preprocess(&mat, &input_tensors[0], &im_info)) { FDERROR << "Failed to preprocess input image." << std::endl; return false; } #ifdef FASTDEPLOY_DEBUG TIMERECORD_END(0, "Preprocess") TIMERECORD_START(1) #endif input_tensors[0].name = InputInfoOfRuntime(0).name; std::vector output_tensors; if (!Infer(input_tensors, &output_tensors)) { FDERROR << "Failed to inference." << std::endl; return false; } #ifdef FASTDEPLOY_DEBUG TIMERECORD_END(1, "Inference") TIMERECORD_START(2) #endif if (is_decode_exported) { if (!Postprocess(output_tensors[0], result, im_info, conf_threshold, nms_iou_threshold)) { FDERROR << "Failed to post process." << std::endl; return false; } } else { if (!PostprocessWithDecode(output_tensors[0], result, im_info, conf_threshold, nms_iou_threshold)) { FDERROR << "Failed to post process." << std::endl; return false; } } #ifdef FASTDEPLOY_DEBUG TIMERECORD_END(2, "Postprocess") #endif return true; } } // namespace detection } // namespace vision } // namespace fastdeploy