mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
355 lines
13 KiB
C++
355 lines
13 KiB
C++
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/detection/contrib/nanodet_plus.h"
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
namespace vision {
|
|
|
|
namespace detection {
|
|
|
|
struct NanoDetPlusCenterPoint {
|
|
int grid0;
|
|
int grid1;
|
|
int stride;
|
|
};
|
|
|
|
void GenerateNanoDetPlusCenterPoints(
|
|
const std::vector<int>& size, const std::vector<int>& downsample_strides,
|
|
std::vector<NanoDetPlusCenterPoint>* center_points) {
|
|
// size: tuple of input (width, height), e.g (320, 320)
|
|
// downsample_strides: downsample strides in NanoDet and
|
|
// NanoDet-Plus, e.g (8, 16, 32, 64)
|
|
const int width = size[0];
|
|
const int height = size[1];
|
|
for (const auto& ds : downsample_strides) {
|
|
int num_grid_w = width / ds;
|
|
int num_grid_h = height / ds;
|
|
for (int g1 = 0; g1 < num_grid_h; ++g1) {
|
|
for (int g0 = 0; g0 < num_grid_w; ++g0) {
|
|
(*center_points).emplace_back(NanoDetPlusCenterPoint{g0, g1, ds});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void WrapAndResize(Mat* mat, std::vector<int> size, std::vector<float> color,
|
|
bool keep_ratio = false) {
|
|
// Reference: nanodet/data/transform/warp.py#L139
|
|
// size: tuple of input (width, height)
|
|
// The default value of `keep_ratio` is `fasle` in
|
|
// `config/nanodet-plus-m-1.5x_320.yml` for both
|
|
// train and val processes. So, we just let this
|
|
// option default `false` according to the official
|
|
// implementation in NanoDet and NanoDet-Plus.
|
|
// Note, this function will apply a normal resize
|
|
// operation to input Mat if the keep_ratio option
|
|
// is fasle and the behavior will be the same as
|
|
// yolov5's letterbox if keep_ratio is true.
|
|
|
|
// with keep_ratio = false (default)
|
|
if (!keep_ratio) {
|
|
int resize_h = size[1];
|
|
int resize_w = size[0];
|
|
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
|
Resize::Run(mat, resize_w, resize_h);
|
|
}
|
|
return;
|
|
}
|
|
// with keep_ratio = true, same as yolov5's letterbox
|
|
float r = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
|
|
size[0] * 1.0f / static_cast<float>(mat->Width()));
|
|
|
|
int resize_h = int(round(static_cast<float>(mat->Height()) * r));
|
|
int resize_w = int(round(static_cast<float>(mat->Width()) * r));
|
|
|
|
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
|
Resize::Run(mat, resize_w, resize_h);
|
|
}
|
|
|
|
int pad_w = size[0] - resize_w;
|
|
int pad_h = size[1] - resize_h;
|
|
if (pad_h > 0 || pad_w > 0) {
|
|
float half_h = pad_h * 1.0 / 2;
|
|
int top = int(round(half_h - 0.1));
|
|
int bottom = int(round(half_h + 0.1));
|
|
float half_w = pad_w * 1.0 / 2;
|
|
int left = int(round(half_w - 0.1));
|
|
int right = int(round(half_w + 0.1));
|
|
Pad::Run(mat, top, bottom, left, right, color);
|
|
}
|
|
}
|
|
|
|
void GFLRegression(const float* logits, size_t reg_num, float* offset) {
|
|
// Hint: reg_num = reg_max + 1
|
|
FDASSERT(((nullptr != logits) && (reg_num != 0)),
|
|
"NanoDetPlus: logits is nullptr or reg_num is 0 in GFLRegression.");
|
|
// softmax
|
|
float total_exp = 0.f;
|
|
std::vector<float> softmax_probs(reg_num);
|
|
for (size_t i = 0; i < reg_num; ++i) {
|
|
softmax_probs[i] = std::exp(logits[i]);
|
|
total_exp += softmax_probs[i];
|
|
}
|
|
for (size_t i = 0; i < reg_num; ++i) {
|
|
softmax_probs[i] = softmax_probs[i] / total_exp;
|
|
}
|
|
// gfl regression -> offset
|
|
for (size_t i = 0; i < reg_num; ++i) {
|
|
(*offset) += static_cast<float>(i) * softmax_probs[i];
|
|
}
|
|
}
|
|
|
|
NanoDetPlus::NanoDetPlus(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const RuntimeOption& custom_option,
|
|
const Frontend& model_format) {
|
|
if (model_format == Frontend::ONNX) {
|
|
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
|
|
} else {
|
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
}
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool NanoDetPlus::Initialize() {
|
|
// parameters for preprocess
|
|
size = {320, 320};
|
|
padding_value = {0.0f, 0.0f, 0.0f};
|
|
keep_ratio = false;
|
|
downsample_strides = {8, 16, 32, 64};
|
|
max_wh = 4096.0f;
|
|
reg_max = 7;
|
|
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
// Check if the input shape is dynamic after Runtime already initialized.
|
|
is_dynamic_input_ = false;
|
|
auto shape = InputInfoOfRuntime(0).shape;
|
|
for (int i = 0; i < shape.size(); ++i) {
|
|
// if height or width is dynamic
|
|
if (i >= 2 && shape[i] <= 0) {
|
|
is_dynamic_input_ = true;
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool NanoDetPlus::Preprocess(
|
|
Mat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<float, 2>>* im_info) {
|
|
// NanoDet-Plus preprocess steps
|
|
// 1. WrapAndResize
|
|
// 2. HWC->CHW
|
|
// 3. Normalize or Convert (keep BGR order)
|
|
WrapAndResize(mat, size, padding_value, keep_ratio);
|
|
// Record output shape of preprocessed image
|
|
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
|
|
static_cast<float>(mat->Width())};
|
|
|
|
// Compute `result = mat * alpha + beta` directly by channel
|
|
// Reference: /config/nanodet-plus-m-1.5x_320.yml#L89
|
|
// from mean: [103.53, 116.28, 123.675], std: [57.375, 57.12, 58.395]
|
|
// x' = (x - mean) / std to x'= x * alpha + beta.
|
|
// e.g alpha[0] = 0.017429f = 1.0f / 57.375f
|
|
// e.g beta[0] = -103.53f * 0.0174291f
|
|
std::vector<float> alpha = {0.017429f, 0.017507f, 0.017125f};
|
|
std::vector<float> beta = {-103.53f * 0.0174291f, -116.28f * 0.0175070f,
|
|
-123.675f * 0.0171247f}; // BGR order
|
|
Convert::Run(mat, alpha, beta);
|
|
|
|
HWC2CHW::Run(mat);
|
|
Cast::Run(mat, "float");
|
|
mat->ShareWithTensor(output);
|
|
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
|
|
return true;
|
|
}
|
|
|
|
bool NanoDetPlus::Postprocess(
|
|
FDTensor& infer_result, DetectionResult* result,
|
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
|
float conf_threshold, float nms_iou_threshold) {
|
|
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
|
|
result->Clear();
|
|
result->Reserve(infer_result.shape[1]);
|
|
if (infer_result.dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
// generate center points with dowmsample strides
|
|
std::vector<NanoDetPlusCenterPoint> center_points;
|
|
GenerateNanoDetPlusCenterPoints(size, downsample_strides, ¢er_points);
|
|
|
|
// infer_result shape might look like (1,2125,112)
|
|
const int num_cls_reg = infer_result.shape[2]; // e.g 112
|
|
const int num_classes = num_cls_reg - (reg_max + 1) * 4; // e.g 80
|
|
float* data = static_cast<float*>(infer_result.Data());
|
|
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
|
|
float* scores = data + i * num_cls_reg;
|
|
float* max_class_score = std::max_element(scores, scores + num_classes);
|
|
float confidence = (*max_class_score);
|
|
// filter boxes by conf_threshold
|
|
if (confidence <= conf_threshold) {
|
|
continue;
|
|
}
|
|
int32_t label_id = std::distance(scores, max_class_score);
|
|
// fetch i-th center point
|
|
float grid0 = static_cast<float>(center_points.at(i).grid0);
|
|
float grid1 = static_cast<float>(center_points.at(i).grid1);
|
|
float downsample_stride = static_cast<float>(center_points.at(i).stride);
|
|
// apply gfl regression to get offsets (l,t,r,b)
|
|
float* logits = data + i * num_cls_reg + num_classes; // 32|44...
|
|
std::vector<float> offsets(4);
|
|
for (size_t j = 0; j < 4; ++j) {
|
|
GFLRegression(logits + j * (reg_max + 1), reg_max + 1, &offsets[j]);
|
|
}
|
|
// convert from offsets to [x1, y1, x2, y2]
|
|
float l = offsets[0]; // left
|
|
float t = offsets[1]; // top
|
|
float r = offsets[2]; // right
|
|
float b = offsets[3]; // bottom
|
|
|
|
float x1 = (grid0 - l) * downsample_stride; // cx - l x1
|
|
float y1 = (grid1 - t) * downsample_stride; // cy - t y1
|
|
float x2 = (grid0 + r) * downsample_stride; // cx + r x2
|
|
float y2 = (grid1 + b) * downsample_stride; // cy + b y2
|
|
|
|
result->boxes.emplace_back(
|
|
std::array<float, 4>{x1 + label_id * max_wh, y1 + label_id * max_wh,
|
|
x2 + label_id * max_wh, y2 + label_id * max_wh});
|
|
// label_id * max_wh for multi classes NMS
|
|
result->label_ids.push_back(label_id);
|
|
result->scores.push_back(confidence);
|
|
}
|
|
utils::NMS(result, nms_iou_threshold);
|
|
|
|
// scale the boxes to the origin image shape
|
|
auto iter_out = im_info.find("output_shape");
|
|
auto iter_ipt = im_info.find("input_shape");
|
|
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
|
|
"Cannot find input_shape or output_shape from im_info.");
|
|
float out_h = iter_out->second[0];
|
|
float out_w = iter_out->second[1];
|
|
float ipt_h = iter_ipt->second[0];
|
|
float ipt_w = iter_ipt->second[1];
|
|
// without keep_ratio
|
|
if (!keep_ratio) {
|
|
// x' = (x / out_w) * ipt_w = x / (out_w / ipt_w)
|
|
// y' = (y / out_h) * ipt_h = y / (out_h / ipt_h)
|
|
float r_w = out_w / ipt_w;
|
|
float r_h = out_h / ipt_h;
|
|
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
|
int32_t label_id = (result->label_ids)[i];
|
|
// clip box
|
|
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
|
|
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
|
|
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
|
|
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
|
|
result->boxes[i][0] = std::max(result->boxes[i][0] / r_w, 0.0f);
|
|
result->boxes[i][1] = std::max(result->boxes[i][1] / r_h, 0.0f);
|
|
result->boxes[i][2] = std::max(result->boxes[i][2] / r_w, 0.0f);
|
|
result->boxes[i][3] = std::max(result->boxes[i][3] / r_h, 0.0f);
|
|
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
|
|
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
|
|
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
|
|
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
|
|
}
|
|
return true;
|
|
}
|
|
// with keep_ratio
|
|
float r = std::min(out_h / ipt_h, out_w / ipt_w);
|
|
float pad_h = (out_h - ipt_h * r) / 2;
|
|
float pad_w = (out_w - ipt_w * r) / 2;
|
|
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
|
int32_t label_id = (result->label_ids)[i];
|
|
// clip box
|
|
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
|
|
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
|
|
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
|
|
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
|
|
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / r, 0.0f);
|
|
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / r, 0.0f);
|
|
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / r, 0.0f);
|
|
result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / r, 0.0f);
|
|
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
|
|
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
|
|
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
|
|
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool NanoDetPlus::Predict(cv::Mat* im, DetectionResult* result,
|
|
float conf_threshold, float nms_iou_threshold) {
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
TIMERECORD_START(0)
|
|
#endif
|
|
|
|
Mat mat(*im);
|
|
std::vector<FDTensor> input_tensors(1);
|
|
|
|
std::map<std::string, std::array<float, 2>> im_info;
|
|
|
|
// Record the shape of image and the shape of preprocessed image
|
|
im_info["input_shape"] = {static_cast<float>(mat.Height()),
|
|
static_cast<float>(mat.Width())};
|
|
im_info["output_shape"] = {static_cast<float>(mat.Height()),
|
|
static_cast<float>(mat.Width())};
|
|
|
|
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
|
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
TIMERECORD_END(0, "Preprocess")
|
|
TIMERECORD_START(1)
|
|
#endif
|
|
|
|
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
|
std::vector<FDTensor> output_tensors;
|
|
if (!Infer(input_tensors, &output_tensors)) {
|
|
FDERROR << "Failed to inference." << std::endl;
|
|
return false;
|
|
}
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
TIMERECORD_END(1, "Inference")
|
|
TIMERECORD_START(2)
|
|
#endif
|
|
|
|
if (!Postprocess(output_tensors[0], result, im_info, conf_threshold,
|
|
nms_iou_threshold)) {
|
|
FDERROR << "Failed to post process." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
TIMERECORD_END(2, "Postprocess")
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|