Files
FastDeploy/fastdeploy/vision/detection/contrib/nanodet_plus.cc
2022-09-14 15:44:13 +08:00

355 lines
13 KiB
C++

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/nanodet_plus.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace detection {
struct NanoDetPlusCenterPoint {
int grid0;
int grid1;
int stride;
};
void GenerateNanoDetPlusCenterPoints(
const std::vector<int>& size, const std::vector<int>& downsample_strides,
std::vector<NanoDetPlusCenterPoint>* center_points) {
// size: tuple of input (width, height), e.g (320, 320)
// downsample_strides: downsample strides in NanoDet and
// NanoDet-Plus, e.g (8, 16, 32, 64)
const int width = size[0];
const int height = size[1];
for (const auto& ds : downsample_strides) {
int num_grid_w = width / ds;
int num_grid_h = height / ds;
for (int g1 = 0; g1 < num_grid_h; ++g1) {
for (int g0 = 0; g0 < num_grid_w; ++g0) {
(*center_points).emplace_back(NanoDetPlusCenterPoint{g0, g1, ds});
}
}
}
}
void WrapAndResize(Mat* mat, std::vector<int> size, std::vector<float> color,
bool keep_ratio = false) {
// Reference: nanodet/data/transform/warp.py#L139
// size: tuple of input (width, height)
// The default value of `keep_ratio` is `fasle` in
// `config/nanodet-plus-m-1.5x_320.yml` for both
// train and val processes. So, we just let this
// option default `false` according to the official
// implementation in NanoDet and NanoDet-Plus.
// Note, this function will apply a normal resize
// operation to input Mat if the keep_ratio option
// is fasle and the behavior will be the same as
// yolov5's letterbox if keep_ratio is true.
// with keep_ratio = false (default)
if (!keep_ratio) {
int resize_h = size[1];
int resize_w = size[0];
if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h);
}
return;
}
// with keep_ratio = true, same as yolov5's letterbox
float r = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
size[0] * 1.0f / static_cast<float>(mat->Width()));
int resize_h = int(round(static_cast<float>(mat->Height()) * r));
int resize_w = int(round(static_cast<float>(mat->Width()) * r));
if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h);
}
int pad_w = size[0] - resize_w;
int pad_h = size[1] - resize_h;
if (pad_h > 0 || pad_w > 0) {
float half_h = pad_h * 1.0 / 2;
int top = int(round(half_h - 0.1));
int bottom = int(round(half_h + 0.1));
float half_w = pad_w * 1.0 / 2;
int left = int(round(half_w - 0.1));
int right = int(round(half_w + 0.1));
Pad::Run(mat, top, bottom, left, right, color);
}
}
void GFLRegression(const float* logits, size_t reg_num, float* offset) {
// Hint: reg_num = reg_max + 1
FDASSERT(((nullptr != logits) && (reg_num != 0)),
"NanoDetPlus: logits is nullptr or reg_num is 0 in GFLRegression.");
// softmax
float total_exp = 0.f;
std::vector<float> softmax_probs(reg_num);
for (size_t i = 0; i < reg_num; ++i) {
softmax_probs[i] = std::exp(logits[i]);
total_exp += softmax_probs[i];
}
for (size_t i = 0; i < reg_num; ++i) {
softmax_probs[i] = softmax_probs[i] / total_exp;
}
// gfl regression -> offset
for (size_t i = 0; i < reg_num; ++i) {
(*offset) += static_cast<float>(i) * softmax_probs[i];
}
}
NanoDetPlus::NanoDetPlus(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const Frontend& model_format) {
if (model_format == Frontend::ONNX) {
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool NanoDetPlus::Initialize() {
// parameters for preprocess
size = {320, 320};
padding_value = {0.0f, 0.0f, 0.0f};
keep_ratio = false;
downsample_strides = {8, 16, 32, 64};
max_wh = 4096.0f;
reg_max = 7;
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
// Check if the input shape is dynamic after Runtime already initialized.
is_dynamic_input_ = false;
auto shape = InputInfoOfRuntime(0).shape;
for (int i = 0; i < shape.size(); ++i) {
// if height or width is dynamic
if (i >= 2 && shape[i] <= 0) {
is_dynamic_input_ = true;
break;
}
}
return true;
}
bool NanoDetPlus::Preprocess(
Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
// NanoDet-Plus preprocess steps
// 1. WrapAndResize
// 2. HWC->CHW
// 3. Normalize or Convert (keep BGR order)
WrapAndResize(mat, size, padding_value, keep_ratio);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
// Compute `result = mat * alpha + beta` directly by channel
// Reference: /config/nanodet-plus-m-1.5x_320.yml#L89
// from mean: [103.53, 116.28, 123.675], std: [57.375, 57.12, 58.395]
// x' = (x - mean) / std to x'= x * alpha + beta.
// e.g alpha[0] = 0.017429f = 1.0f / 57.375f
// e.g beta[0] = -103.53f * 0.0174291f
std::vector<float> alpha = {0.017429f, 0.017507f, 0.017125f};
std::vector<float> beta = {-103.53f * 0.0174291f, -116.28f * 0.0175070f,
-123.675f * 0.0171247f}; // BGR order
Convert::Run(mat, alpha, beta);
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
}
bool NanoDetPlus::Postprocess(
FDTensor& infer_result, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold) {
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
result->Clear();
result->Reserve(infer_result.shape[1]);
if (infer_result.dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
// generate center points with dowmsample strides
std::vector<NanoDetPlusCenterPoint> center_points;
GenerateNanoDetPlusCenterPoints(size, downsample_strides, &center_points);
// infer_result shape might look like (1,2125,112)
const int num_cls_reg = infer_result.shape[2]; // e.g 112
const int num_classes = num_cls_reg - (reg_max + 1) * 4; // e.g 80
float* data = static_cast<float*>(infer_result.Data());
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
float* scores = data + i * num_cls_reg;
float* max_class_score = std::max_element(scores, scores + num_classes);
float confidence = (*max_class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold) {
continue;
}
int32_t label_id = std::distance(scores, max_class_score);
// fetch i-th center point
float grid0 = static_cast<float>(center_points.at(i).grid0);
float grid1 = static_cast<float>(center_points.at(i).grid1);
float downsample_stride = static_cast<float>(center_points.at(i).stride);
// apply gfl regression to get offsets (l,t,r,b)
float* logits = data + i * num_cls_reg + num_classes; // 32|44...
std::vector<float> offsets(4);
for (size_t j = 0; j < 4; ++j) {
GFLRegression(logits + j * (reg_max + 1), reg_max + 1, &offsets[j]);
}
// convert from offsets to [x1, y1, x2, y2]
float l = offsets[0]; // left
float t = offsets[1]; // top
float r = offsets[2]; // right
float b = offsets[3]; // bottom
float x1 = (grid0 - l) * downsample_stride; // cx - l x1
float y1 = (grid1 - t) * downsample_stride; // cy - t y1
float x2 = (grid0 + r) * downsample_stride; // cx + r x2
float y2 = (grid1 + b) * downsample_stride; // cy + b y2
result->boxes.emplace_back(
std::array<float, 4>{x1 + label_id * max_wh, y1 + label_id * max_wh,
x2 + label_id * max_wh, y2 + label_id * max_wh});
// label_id * max_wh for multi classes NMS
result->label_ids.push_back(label_id);
result->scores.push_back(confidence);
}
utils::NMS(result, nms_iou_threshold);
// scale the boxes to the origin image shape
auto iter_out = im_info.find("output_shape");
auto iter_ipt = im_info.find("input_shape");
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
// without keep_ratio
if (!keep_ratio) {
// x' = (x / out_w) * ipt_w = x / (out_w / ipt_w)
// y' = (y / out_h) * ipt_h = y / (out_h / ipt_h)
float r_w = out_w / ipt_w;
float r_h = out_h / ipt_h;
for (size_t i = 0; i < result->boxes.size(); ++i) {
int32_t label_id = (result->label_ids)[i];
// clip box
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
result->boxes[i][0] = std::max(result->boxes[i][0] / r_w, 0.0f);
result->boxes[i][1] = std::max(result->boxes[i][1] / r_h, 0.0f);
result->boxes[i][2] = std::max(result->boxes[i][2] / r_w, 0.0f);
result->boxes[i][3] = std::max(result->boxes[i][3] / r_h, 0.0f);
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
}
return true;
}
// with keep_ratio
float r = std::min(out_h / ipt_h, out_w / ipt_w);
float pad_h = (out_h - ipt_h * r) / 2;
float pad_w = (out_w - ipt_w * r) / 2;
for (size_t i = 0; i < result->boxes.size(); ++i) {
int32_t label_id = (result->label_ids)[i];
// clip box
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / r, 0.0f);
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / r, 0.0f);
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / r, 0.0f);
result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / r, 0.0f);
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
}
return true;
}
bool NanoDetPlus::Predict(cv::Mat* im, DetectionResult* result,
float conf_threshold, float nms_iou_threshold) {
#ifdef FASTDEPLOY_DEBUG
TIMERECORD_START(0)
#endif
Mat mat(*im);
std::vector<FDTensor> input_tensors(1);
std::map<std::string, std::array<float, 2>> im_info;
// Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
im_info["output_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
#ifdef FASTDEPLOY_DEBUG
TIMERECORD_END(0, "Preprocess")
TIMERECORD_START(1)
#endif
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
#ifdef FASTDEPLOY_DEBUG
TIMERECORD_END(1, "Inference")
TIMERECORD_START(2)
#endif
if (!Postprocess(output_tensors[0], result, im_info, conf_threshold,
nms_iou_threshold)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
#ifdef FASTDEPLOY_DEBUG
TIMERECORD_END(2, "Postprocess")
#endif
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy