// Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/detection/contrib/nanodet_plus.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/utils/utils.h" namespace fastdeploy { namespace vision { namespace detection { struct NanoDetPlusCenterPoint { int grid0; int grid1; int stride; }; void GenerateNanoDetPlusCenterPoints( const std::vector& size, const std::vector& downsample_strides, std::vector* center_points) { // size: tuple of input (width, height), e.g (320, 320) // downsample_strides: downsample strides in NanoDet and // NanoDet-Plus, e.g (8, 16, 32, 64) const int width = size[0]; const int height = size[1]; for (const auto& ds : downsample_strides) { int num_grid_w = width / ds; int num_grid_h = height / ds; for (int g1 = 0; g1 < num_grid_h; ++g1) { for (int g0 = 0; g0 < num_grid_w; ++g0) { (*center_points).emplace_back(NanoDetPlusCenterPoint{g0, g1, ds}); } } } } void WrapAndResize(Mat* mat, std::vector size, std::vector color, bool keep_ratio = false) { // Reference: nanodet/data/transform/warp.py#L139 // size: tuple of input (width, height) // The default value of `keep_ratio` is `fasle` in // `config/nanodet-plus-m-1.5x_320.yml` for both // train and val processes. So, we just let this // option default `false` according to the official // implementation in NanoDet and NanoDet-Plus. // Note, this function will apply a normal resize // operation to input Mat if the keep_ratio option // is fasle and the behavior will be the same as // yolov5's letterbox if keep_ratio is true. // with keep_ratio = false (default) if (!keep_ratio) { int resize_h = size[1]; int resize_w = size[0]; if (resize_h != mat->Height() || resize_w != mat->Width()) { Resize::Run(mat, resize_w, resize_h); } return; } // with keep_ratio = true, same as yolov5's letterbox float r = std::min(size[1] * 1.0f / static_cast(mat->Height()), size[0] * 1.0f / static_cast(mat->Width())); int resize_h = int(round(static_cast(mat->Height()) * r)); int resize_w = int(round(static_cast(mat->Width()) * r)); if (resize_h != mat->Height() || resize_w != mat->Width()) { Resize::Run(mat, resize_w, resize_h); } int pad_w = size[0] - resize_w; int pad_h = size[1] - resize_h; if (pad_h > 0 || pad_w > 0) { float half_h = pad_h * 1.0 / 2; int top = int(round(half_h - 0.1)); int bottom = int(round(half_h + 0.1)); float half_w = pad_w * 1.0 / 2; int left = int(round(half_w - 0.1)); int right = int(round(half_w + 0.1)); Pad::Run(mat, top, bottom, left, right, color); } } void GFLRegression(const float* logits, size_t reg_num, float* offset) { // Hint: reg_num = reg_max + 1 FDASSERT(((nullptr != logits) && (reg_num != 0)), "NanoDetPlus: logits is nullptr or reg_num is 0 in GFLRegression."); // softmax float total_exp = 0.f; std::vector softmax_probs(reg_num); for (size_t i = 0; i < reg_num; ++i) { softmax_probs[i] = std::exp(logits[i]); total_exp += softmax_probs[i]; } for (size_t i = 0; i < reg_num; ++i) { softmax_probs[i] = softmax_probs[i] / total_exp; } // gfl regression -> offset for (size_t i = 0; i < reg_num; ++i) { (*offset) += static_cast(i) * softmax_probs[i]; } } NanoDetPlus::NanoDetPlus(const std::string& model_file, const std::string& params_file, const RuntimeOption& custom_option, const Frontend& model_format) { if (model_format == Frontend::ONNX) { valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端 valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端 } else { valid_cpu_backends = {Backend::PDINFER, Backend::ORT}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; } runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; runtime_option.params_file = params_file; initialized = Initialize(); } bool NanoDetPlus::Initialize() { // parameters for preprocess size = {320, 320}; padding_value = {0.0f, 0.0f, 0.0f}; keep_ratio = false; downsample_strides = {8, 16, 32, 64}; max_wh = 4096.0f; reg_max = 7; if (!InitRuntime()) { FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } // Check if the input shape is dynamic after Runtime already initialized. is_dynamic_input_ = false; auto shape = InputInfoOfRuntime(0).shape; for (int i = 0; i < shape.size(); ++i) { // if height or width is dynamic if (i >= 2 && shape[i] <= 0) { is_dynamic_input_ = true; break; } } return true; } bool NanoDetPlus::Preprocess( Mat* mat, FDTensor* output, std::map>* im_info) { // NanoDet-Plus preprocess steps // 1. WrapAndResize // 2. HWC->CHW // 3. Normalize or Convert (keep BGR order) WrapAndResize(mat, size, padding_value, keep_ratio); // Record output shape of preprocessed image (*im_info)["output_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; // Compute `result = mat * alpha + beta` directly by channel // Reference: /config/nanodet-plus-m-1.5x_320.yml#L89 // from mean: [103.53, 116.28, 123.675], std: [57.375, 57.12, 58.395] // x' = (x - mean) / std to x'= x * alpha + beta. // e.g alpha[0] = 0.017429f = 1.0f / 57.375f // e.g beta[0] = -103.53f * 0.0174291f std::vector alpha = {0.017429f, 0.017507f, 0.017125f}; std::vector beta = {-103.53f * 0.0174291f, -116.28f * 0.0175070f, -123.675f * 0.0171247f}; // BGR order Convert::Run(mat, alpha, beta); HWC2CHW::Run(mat); Cast::Run(mat, "float"); mat->ShareWithTensor(output); output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c return true; } bool NanoDetPlus::Postprocess( FDTensor& infer_result, DetectionResult* result, const std::map>& im_info, float conf_threshold, float nms_iou_threshold) { FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now."); result->Clear(); result->Reserve(infer_result.shape[1]); if (infer_result.dtype != FDDataType::FP32) { FDERROR << "Only support post process with float32 data." << std::endl; return false; } // generate center points with dowmsample strides std::vector center_points; GenerateNanoDetPlusCenterPoints(size, downsample_strides, ¢er_points); // infer_result shape might look like (1,2125,112) const int num_cls_reg = infer_result.shape[2]; // e.g 112 const int num_classes = num_cls_reg - (reg_max + 1) * 4; // e.g 80 float* data = static_cast(infer_result.Data()); for (size_t i = 0; i < infer_result.shape[1]; ++i) { float* scores = data + i * num_cls_reg; float* max_class_score = std::max_element(scores, scores + num_classes); float confidence = (*max_class_score); // filter boxes by conf_threshold if (confidence <= conf_threshold) { continue; } int32_t label_id = std::distance(scores, max_class_score); // fetch i-th center point float grid0 = static_cast(center_points.at(i).grid0); float grid1 = static_cast(center_points.at(i).grid1); float downsample_stride = static_cast(center_points.at(i).stride); // apply gfl regression to get offsets (l,t,r,b) float* logits = data + i * num_cls_reg + num_classes; // 32|44... std::vector offsets(4); for (size_t j = 0; j < 4; ++j) { GFLRegression(logits + j * (reg_max + 1), reg_max + 1, &offsets[j]); } // convert from offsets to [x1, y1, x2, y2] float l = offsets[0]; // left float t = offsets[1]; // top float r = offsets[2]; // right float b = offsets[3]; // bottom float x1 = (grid0 - l) * downsample_stride; // cx - l x1 float y1 = (grid1 - t) * downsample_stride; // cy - t y1 float x2 = (grid0 + r) * downsample_stride; // cx + r x2 float y2 = (grid1 + b) * downsample_stride; // cy + b y2 result->boxes.emplace_back( std::array{x1 + label_id * max_wh, y1 + label_id * max_wh, x2 + label_id * max_wh, y2 + label_id * max_wh}); // label_id * max_wh for multi classes NMS result->label_ids.push_back(label_id); result->scores.push_back(confidence); } utils::NMS(result, nms_iou_threshold); // scale the boxes to the origin image shape auto iter_out = im_info.find("output_shape"); auto iter_ipt = im_info.find("input_shape"); FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(), "Cannot find input_shape or output_shape from im_info."); float out_h = iter_out->second[0]; float out_w = iter_out->second[1]; float ipt_h = iter_ipt->second[0]; float ipt_w = iter_ipt->second[1]; // without keep_ratio if (!keep_ratio) { // x' = (x / out_w) * ipt_w = x / (out_w / ipt_w) // y' = (y / out_h) * ipt_h = y / (out_h / ipt_h) float r_w = out_w / ipt_w; float r_h = out_h / ipt_h; for (size_t i = 0; i < result->boxes.size(); ++i) { int32_t label_id = (result->label_ids)[i]; // clip box result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id; result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id; result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id; result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id; result->boxes[i][0] = std::max(result->boxes[i][0] / r_w, 0.0f); result->boxes[i][1] = std::max(result->boxes[i][1] / r_h, 0.0f); result->boxes[i][2] = std::max(result->boxes[i][2] / r_w, 0.0f); result->boxes[i][3] = std::max(result->boxes[i][3] / r_h, 0.0f); result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f); result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f); result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f); result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f); } return true; } // with keep_ratio float r = std::min(out_h / ipt_h, out_w / ipt_w); float pad_h = (out_h - ipt_h * r) / 2; float pad_w = (out_w - ipt_w * r) / 2; for (size_t i = 0; i < result->boxes.size(); ++i) { int32_t label_id = (result->label_ids)[i]; // clip box result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id; result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id; result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id; result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id; result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / r, 0.0f); result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / r, 0.0f); result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / r, 0.0f); result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / r, 0.0f); result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f); result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f); result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f); result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f); } return true; } bool NanoDetPlus::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold, float nms_iou_threshold) { #ifdef FASTDEPLOY_DEBUG TIMERECORD_START(0) #endif Mat mat(*im); std::vector input_tensors(1); std::map> im_info; // Record the shape of image and the shape of preprocessed image im_info["input_shape"] = {static_cast(mat.Height()), static_cast(mat.Width())}; im_info["output_shape"] = {static_cast(mat.Height()), static_cast(mat.Width())}; if (!Preprocess(&mat, &input_tensors[0], &im_info)) { FDERROR << "Failed to preprocess input image." << std::endl; return false; } #ifdef FASTDEPLOY_DEBUG TIMERECORD_END(0, "Preprocess") TIMERECORD_START(1) #endif input_tensors[0].name = InputInfoOfRuntime(0).name; std::vector output_tensors; if (!Infer(input_tensors, &output_tensors)) { FDERROR << "Failed to inference." << std::endl; return false; } #ifdef FASTDEPLOY_DEBUG TIMERECORD_END(1, "Inference") TIMERECORD_START(2) #endif if (!Postprocess(output_tensors[0], result, im_info, conf_threshold, nms_iou_threshold)) { FDERROR << "Failed to post process." << std::endl; return false; } #ifdef FASTDEPLOY_DEBUG TIMERECORD_END(2, "Postprocess") #endif return true; } } // namespace detection } // namespace vision } // namespace fastdeploy