mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
45 lines
1.4 KiB
Markdown
45 lines
1.4 KiB
Markdown
# FastDeploy Runtime使用文档
|
||
|
||
`Runtime`作为FastDeploy中模型推理的模块,目前集成了多种后端,用户通过统一的后端即可快速完成不同格式的模型,在各硬件、平台、后端上的推理。本文档通过如下示例展示各硬件、后端上的推理
|
||
|
||
## CPU推理
|
||
|
||
Python示例
|
||
|
||
```python
|
||
import fastdeploy as fd
|
||
import numpy as np
|
||
option = fd.RuntimeOption()
|
||
# 设定模型路径
|
||
option.set_model_path("resnet50/inference.pdmodel", "resnet50/inference.pdiparams")
|
||
# 使用OpenVINO后端
|
||
option.use_openvino_backend()
|
||
# 初始化runtime
|
||
runtime = fd.Runtime(option)
|
||
# 获取输入名
|
||
input_name = runtime.get_input_info(0).name
|
||
# 构造数据进行推理
|
||
results = runtime.infer({input_name: np.random.rand(1, 3, 224, 224).astype("float32")})
|
||
```
|
||
|
||
## GPU推理
|
||
```python
|
||
import fastdeploy as fd
|
||
import numpy as np
|
||
option = fd.RuntimeOption()
|
||
# 设定模型路径
|
||
option.set_model_path("resnet50/inference.pdmodel", "resnet50/inference.pdiparams")
|
||
# 使用GPU,并且使用第0张GPU卡
|
||
option.use_gpu(0)
|
||
# 使用Paddle Inference后端
|
||
option.use_paddle_backend()
|
||
# 初始化runtime
|
||
runtime = fd.Runtime(option)
|
||
# 获取输入名
|
||
input_name = runtime.get_input_info(0).name
|
||
# 构造数据进行推理
|
||
results = runtime.infer({input_name: np.random.rand(1, 3, 224, 224).astype("float32")})
|
||
```
|
||
|
||
更多Python/C++推理示例请直接参考[FastDeploy/examples/runtime](../../examples/runtime)
|