mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 240d6236bc
			
		
	
	240d6236bc
	
	
		
			
	
		
	
	
		
			Some checks failed
		
		
	
	Deploy GitHub Pages / deploy (push) Has been cancelled
				
			* fix topk-topp * update * add base_non_truncated
		
			
				
	
	
		
			77 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # FastDeploy Environment Variables
 | |
| 
 | |
| FastDeploy's environment variables are defined in `fastdeploy/envs.py` at the root of the repository. Below is the documentation:
 | |
| 
 | |
| ```python
 | |
| environment_variables: dict[str, Callable[[], Any]] = {
 | |
|     # CUDA architecture versions used when building FastDeploy (string list, e.g. [80,90])
 | |
|     "FD_BUILDING_ARCS":
 | |
|     lambda: os.getenv("FD_BUILDING_ARCS", "[]"),
 | |
| 
 | |
|     # Log directory
 | |
|     "FD_LOG_DIR":
 | |
|     lambda: os.getenv("FD_LOG_DIR", "log"),
 | |
| 
 | |
|     # Enable debug mode (0 or 1)
 | |
|     "FD_DEBUG":
 | |
|     lambda: os.getenv("FD_DEBUG", "0"),
 | |
| 
 | |
|     # FastDeploy log retention days
 | |
|     "FD_LOG_BACKUP_COUNT":
 | |
|     lambda: os.getenv("FD_LOG_BACKUP_COUNT", "7"),
 | |
| 
 | |
|     # Model download cache directory
 | |
|     "FD_MODEL_CACHE":
 | |
|     lambda: os.getenv("FD_MODEL_CACHE", None),
 | |
| 
 | |
|     # Maximum number of stop sequences
 | |
|     "FD_MAX_STOP_SEQS_NUM":
 | |
|     lambda: os.getenv("FD_MAX_STOP_SEQS_NUM", "5"),
 | |
| 
 | |
|     # Maximum length of stop sequences
 | |
|     "FD_STOP_SEQS_MAX_LEN":
 | |
|     lambda: os.getenv("FD_STOP_SEQS_MAX_LEN", "8"),
 | |
| 
 | |
|     # GPU devices to use (comma-separated string, e.g. 0,1,2)
 | |
|     "CUDA_VISIBLE_DEVICES":
 | |
|     lambda: os.getenv("CUDA_VISIBLE_DEVICES", None),
 | |
| 
 | |
|     # Whether to use HuggingFace tokenizer (0 or 1)
 | |
|     "FD_USE_HF_TOKENIZER":
 | |
|     lambda: os.getenv("FD_USE_HF_TOKENIZER", 0),
 | |
| 
 | |
|     # ZMQ send high-water mark (HWM) during initialization
 | |
|     "FD_ZMQ_SNDHWM":
 | |
|     lambda: os.getenv("FD_ZMQ_SNDHWM", 10000),
 | |
| 
 | |
|     # Directory for caching KV quantization parameters
 | |
|     "FD_CACHE_PARAMS":
 | |
|     lambda: os.getenv("FD_CACHE_PARAMS", "none"),
 | |
| 
 | |
|     # Attention backend ("NATIVE_ATTN", "APPEND_ATTN", or "MLA_ATTN")
 | |
|     "FD_ATTENTION_BACKEND":
 | |
|     lambda: os.getenv("FD_ATTENTION_BACKEND", "APPEND_ATTN"),
 | |
| 
 | |
|     # Sampling class ("base", "base_non_truncated", "air", or "rejection")
 | |
|     "FD_SAMPLING_CLASS":
 | |
|     lambda: os.getenv("FD_SAMPLING_CLASS", "base"),
 | |
| 
 | |
|     # MoE backend ("cutlass", "marlin", or "triton")
 | |
|     "FD_MOE_BACKEND":
 | |
|     lambda: os.getenv("FD_MOE_BACKEND", "cutlass"),
 | |
| 
 | |
|     # Triton kernel JIT compilation directory
 | |
|     "FD_TRITON_KERNEL_CACHE_DIR":
 | |
|     lambda: os.getenv("FD_TRITON_KERNEL_CACHE_DIR", None),
 | |
| 
 | |
|     # Switch from standalone PD to centralized inference (0 or 1)
 | |
|     "FD_PD_CHANGEABLE":
 | |
|     lambda: os.getenv("FD_PD_CHANGEABLE", "1"),
 | |
| 
 | |
|     # Whether to use DeepGemm for FP8 blockwise MoE.
 | |
|     "FD_USE_DEEP_GEMM":
 | |
|     lambda: bool(int(os.getenv("FD_USE_DEEP_GEMM", "1"))),
 | |
| 
 | |
| }
 | |
| ```
 |