mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
141 lines
5.1 KiB
Markdown
141 lines
5.1 KiB
Markdown
# WINT2 Quantization
|
||
|
||
Weights are compressed offline using the [CCQ (Convolutional Coding Quantization)](https://arxiv.org/pdf/2507.07145) method. The actual stored numerical type of weights is INT8, with 4 weights packed into each INT8 value, equivalent to 2 bits per weight. Activations are not quantized. During inference, weights are dequantized and decoded in real-time to BF16 numerical type, and calculations are performed using BF16 numerical type.
|
||
- **Supported Hardware**: GPU
|
||
- **Supported Architecture**: MoE architecture
|
||
This method relies on the convolution algorithm to use overlapping bits to map 2-bit values to a larger numerical representation space, so that the model weight quantization retains more information of the original data while compressing the true value to an extremely low 2-bit size. The general principle can be seen in the figure below:
|
||
[卷积编码量化示意图](./wint2.png)
|
||
|
||
CCQ WINT2 is generally used in resource-constrained and low-threshold scenarios. Taking ERNIE-4.5-300B-A47B as an example, weights are compressed to 89GB, supporting single-card deployment on 141GB H20.
|
||
|
||
## Executing WINT2 Offline Inference
|
||
- When executing TP2/TP4 models, you can change the `model_name_or_path` and `tensor_parallel_size` parameters.
|
||
```
|
||
model_name_or_path = "baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle"
|
||
prompts = ["解析三首李白的诗"]
|
||
from fastdeploy import LLM, SamplingParams
|
||
sampling_params = SamplingParams(temperature=0.7, top_p=0, max_tokens=128)
|
||
llm = LLM(model=model_name_or_path, tensor_parallel_size=1, use_cudagraph=True,)
|
||
outputs = llm.generate(prompts, sampling_params)
|
||
print(outputs)
|
||
|
||
```
|
||
|
||
## Run WINT2 Inference Service
|
||
- When executing TP2/TP4 models, you can change the `--model` and `tensor-parallel-size` parameters.
|
||
```
|
||
python -m fastdeploy.entrypoints.openai.api_server \
|
||
--model baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle \
|
||
--port 8180 \
|
||
--metrics-port 8181 \
|
||
--engine-worker-queue-port 8182 \
|
||
--cache-queue-port 8183 \
|
||
--tensor-parallel-size 1 \
|
||
--max-model-len 32768 \
|
||
--use-cudagraph \
|
||
--enable-prefix-caching \
|
||
--enable-chunked-prefill \
|
||
--max-num-seqs 256
|
||
```
|
||
|
||
## Request the Service
|
||
After starting the service, the following output indicates successful initialization:
|
||
|
||
```shell
|
||
api_server.py[line:91] Launching metrics service at http://0.0.0.0:8181/metrics
|
||
api_server.py[line:94] Launching chat completion service at http://0.0.0.0:8180/v1/chat/completions
|
||
api_server.py[line:97] Launching completion service at http://0.0.0.0:8180/v1/completions
|
||
INFO: Started server process [13909]
|
||
INFO: Waiting for application startup.
|
||
INFO: Application startup complete.
|
||
INFO: Uvicorn running on http://0.0.0.0:8180 (Press CTRL+C to quit)
|
||
```
|
||
|
||
### Health Check
|
||
|
||
Verify service status (HTTP 200 indicates success):
|
||
|
||
```shell
|
||
curl -i http://0.0.0.0:8180/health
|
||
```
|
||
|
||
### cURL Request
|
||
|
||
Send requests to the service with the following command:
|
||
|
||
```shell
|
||
curl -X POST "http://0.0.0.0:1822/v1/chat/completions" \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"messages": [
|
||
{"role": "user", "content": "Write me a poem about large language model."}
|
||
],
|
||
"stream": true
|
||
}'
|
||
```
|
||
|
||
### Python Client (OpenAI-compatible API)
|
||
|
||
FastDeploy's API is OpenAI-compatible. You can also use Python for requests:
|
||
|
||
```python
|
||
import openai
|
||
host = "0.0.0.0"
|
||
port = "8180"
|
||
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
|
||
|
||
response = client.chat.completions.create(
|
||
model="null",
|
||
messages=[
|
||
{"role": "system", "content": "I'm a helpful AI assistant."},
|
||
{"role": "user", "content": "Write me a poem about large language model."},
|
||
],
|
||
stream=True,
|
||
)
|
||
for chunk in response:
|
||
if chunk.choices[0].delta:
|
||
print(chunk.choices[0].delta.content, end='')
|
||
print('\n')
|
||
```
|
||
|
||
By specifying `--model baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle`, the offline quantized WINT2 model can be automatically downloaded from AIStudio. In the config.json file of this model, there will be WINT2 quantization-related configuration information, so there's no need to set `--quantization` when starting the inference service.
|
||
|
||
Example of quantization configuration in the model's config.json file:
|
||
|
||
```
|
||
"quantization_config": {
|
||
"dense_quant_type": "wint8",
|
||
"moe_quant_type": "w4w2",
|
||
"quantization": "wint2",
|
||
"moe_quant_config": {
|
||
"moe_w4_quant_config": {
|
||
"quant_type": "wint4",
|
||
"quant_granularity": "per_channel",
|
||
"quant_start_layer": 0,
|
||
"quant_end_layer": 6
|
||
},
|
||
"moe_w2_quant_config": {
|
||
"quant_type": "wint2",
|
||
"quant_granularity": "pp_acc",
|
||
"quant_group_size": 64,
|
||
"quant_start_layer": 7,
|
||
"quant_end_layer": 53
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
- For more deployment tutorials, please refer to [get_started](../get_started/ernie-4.5.md);
|
||
- For more model descriptions, please refer to [Supported Model List](../supported_models.md).
|
||
|
||
## WINT2 Performance
|
||
|
||
On the ERNIE-4.5-300B-A47B model, comparison of WINT2 vs WINT4 performance:
|
||
|
||
| Test Set | Dataset Size | WINT4 | WINT2 |
|
||
|---------|---------|---------|---------|
|
||
| IFEval |500|88.17 | 85.95 |
|
||
|BBH|6511|94.43|90.06|
|
||
|DROP|9536|91.17|89.32|
|
||
|CMMLU|11477|89.92|86.55|
|