mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
211 lines
6.9 KiB
Python
211 lines
6.9 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import numpy as np
|
||
|
||
# tests/test_speculate_update_v3.py
|
||
import paddle
|
||
|
||
from fastdeploy.model_executor.ops.xpu import speculate_update_v3
|
||
|
||
|
||
# ---------------- NumPy 参考实现 ----------------
|
||
def speculate_update_v3_np(
|
||
seq_lens_encoder,
|
||
seq_lens_decoder,
|
||
not_need_stop,
|
||
draft_tokens,
|
||
actual_draft_token_nums,
|
||
accept_tokens,
|
||
accept_num,
|
||
stop_flags,
|
||
seq_lens_this_time,
|
||
is_block_step,
|
||
stop_nums,
|
||
):
|
||
"""
|
||
完全复现 CPU / CUDA 逻辑的 NumPy 参考版本(就地修改)。
|
||
"""
|
||
stop_sum = 0
|
||
real_bsz = seq_lens_this_time.shape[0]
|
||
max_bsz = stop_flags.shape[0]
|
||
max_draft_tokens = draft_tokens.shape[1]
|
||
|
||
for bid in range(max_bsz):
|
||
stop_flag_now_int = 0
|
||
inactive = bid >= real_bsz
|
||
block_step = (not inactive) and is_block_step[bid]
|
||
|
||
if (not block_step) and (not inactive):
|
||
|
||
if stop_flags[bid]:
|
||
stop_flag_now_int = 1
|
||
|
||
# encoder 长度为 0 时直接累加 decoder
|
||
if seq_lens_encoder[bid] == 0:
|
||
seq_lens_decoder[bid] += accept_num[bid]
|
||
|
||
# draft 长度自适应
|
||
if (seq_lens_encoder[bid] == 0) and (seq_lens_this_time[bid] > 1):
|
||
cur_len = actual_draft_token_nums[bid]
|
||
if accept_num[bid] - 1 == cur_len: # 全部接受
|
||
if cur_len + 2 <= max_draft_tokens - 1:
|
||
cur_len += 2
|
||
elif cur_len + 1 <= max_draft_tokens - 1:
|
||
cur_len += 1
|
||
else:
|
||
cur_len = max_draft_tokens - 1
|
||
else: # 有拒绝
|
||
cur_len = max(1, cur_len - 1)
|
||
actual_draft_token_nums[bid] = cur_len
|
||
|
||
# 偿还 encoder 欠账
|
||
if seq_lens_encoder[bid] != 0:
|
||
seq_lens_decoder[bid] += seq_lens_encoder[bid]
|
||
seq_lens_encoder[bid] = 0
|
||
|
||
# 写回下一轮首 token
|
||
draft_tokens[bid, 0] = accept_tokens[bid, accept_num[bid] - 1]
|
||
|
||
# 停止则清零 decoder
|
||
if stop_flag_now_int:
|
||
seq_lens_decoder[bid] = 0
|
||
|
||
elif inactive:
|
||
stop_flag_now_int = 1 # padding slot 视为 stop
|
||
|
||
stop_sum += stop_flag_now_int
|
||
|
||
# print("stop_sum: ", stop_sum)
|
||
not_need_stop[0] = stop_sum < stop_nums[0]
|
||
|
||
# 返回引用,仅供一致性
|
||
return (
|
||
seq_lens_encoder,
|
||
seq_lens_decoder,
|
||
not_need_stop,
|
||
draft_tokens,
|
||
actual_draft_token_nums,
|
||
)
|
||
|
||
|
||
# ---------------- 生成随机输入 ----------------
|
||
def gen_inputs(
|
||
max_bsz=512, # 与 CUDA BlockSize 对齐
|
||
max_draft_tokens=16,
|
||
real_bsz=123, # 可自调;须 ≤ max_bsz
|
||
seed=2022,
|
||
):
|
||
rng = np.random.default_rng(seed)
|
||
|
||
# 基本张量
|
||
seq_lens_encoder = rng.integers(0, 3, size=max_bsz, dtype=np.int32)
|
||
seq_lens_decoder = rng.integers(0, 20, size=max_bsz, dtype=np.int32)
|
||
not_need_stop = rng.integers(0, 1, size=1, dtype=np.bool_)
|
||
draft_tokens = rng.integers(0, 1000, size=(max_bsz, max_draft_tokens), dtype=np.int64)
|
||
actual_draft_nums = rng.integers(1, max_draft_tokens, size=max_bsz, dtype=np.int32)
|
||
accept_tokens = rng.integers(0, 1000, size=(max_bsz, max_draft_tokens), dtype=np.int64)
|
||
accept_num = rng.integers(1, max_draft_tokens, size=max_bsz, dtype=np.int32)
|
||
stop_flags = rng.integers(0, 2, size=max_bsz, dtype=np.bool_)
|
||
is_block_step = rng.integers(0, 2, size=max_bsz, dtype=np.bool_)
|
||
stop_nums = np.array([5], dtype=np.int64) # 阈值随意
|
||
|
||
# seq_lens_this_time 仅取 real_bsz 长度
|
||
seq_lens_this_time = rng.integers(1, max_draft_tokens, size=real_bsz, dtype=np.int32)
|
||
|
||
return {
|
||
"seq_lens_encoder": seq_lens_encoder,
|
||
"seq_lens_decoder": seq_lens_decoder,
|
||
"not_need_stop": not_need_stop,
|
||
"draft_tokens": draft_tokens,
|
||
"actual_draft_token_nums": actual_draft_nums,
|
||
"accept_tokens": accept_tokens,
|
||
"accept_num": accept_num,
|
||
"stop_flags": stop_flags,
|
||
"seq_lens_this_time": seq_lens_this_time,
|
||
"is_block_step": is_block_step,
|
||
"stop_nums": stop_nums,
|
||
# real_bsz = real_bsz,
|
||
# max_bsz = max_bsz,
|
||
# max_draft_tokens = max_draft_tokens
|
||
}
|
||
|
||
|
||
# ------------------- 单测主体 -------------------
|
||
inputs = gen_inputs(max_bsz=512, max_draft_tokens=32, real_bsz=201)
|
||
|
||
# ---- Paddle 端 ----
|
||
paddle_inputs = {}
|
||
for k, v in inputs.items():
|
||
if k in ("real_bsz", "max_bsz", "max_draft_tokens"):
|
||
paddle_inputs[k] = v # 纯 python int
|
||
else:
|
||
if k == "not_need_stop":
|
||
paddle_inputs[k] = paddle.to_tensor(v, place=paddle.CPUPlace())
|
||
else:
|
||
# 其余张量保持默认 place(想测 GPU 就手动加 place=paddle.CUDAPlace(0))
|
||
paddle_inputs[k] = paddle.to_tensor(v)
|
||
|
||
# ---- NumPy 端 ----
|
||
# 为保证初值一致,这里必须复制 Paddle 入参的 numpy 值再传给参考实现
|
||
np_inputs = {
|
||
k: (paddle_inputs[k].numpy().copy() if isinstance(paddle_inputs[k], paddle.Tensor) else paddle_inputs[k])
|
||
for k in paddle_inputs
|
||
}
|
||
|
||
# 调用自定义算子
|
||
# print("seq_lens_encoder_xpu_before: ", paddle_inputs["seq_lens_encoder"])
|
||
out_pd = speculate_update_v3(**paddle_inputs)
|
||
# print("seq_lens_encoder_xpu_after: ", out_pd[0])
|
||
# print("not_need_stop: ", out_pd[2])
|
||
|
||
# speculate_update_v3 返回 5 个张量(与 Outputs 对应)
|
||
(
|
||
seq_lens_encoder_pd,
|
||
seq_lens_decoder_pd,
|
||
not_need_stop_pd,
|
||
draft_tokens_pd,
|
||
actual_draft_nums_pd,
|
||
) = out_pd
|
||
|
||
# print("seq_lens_encoder_np_before: ", np_inputs["seq_lens_encoder"])
|
||
out_np = speculate_update_v3_np(**np_inputs)
|
||
# print("seq_lens_encoder_np_after: ", out_np[0])
|
||
# print("not_need_stop: ", out_np[2])
|
||
|
||
|
||
# ---------------- 校对 ----------------
|
||
names = [
|
||
"seq_lens_encoder",
|
||
"seq_lens_decoder",
|
||
"not_need_stop",
|
||
"draft_tokens",
|
||
"actual_draft_token_nums",
|
||
]
|
||
pd_tensors = [
|
||
seq_lens_encoder_pd,
|
||
seq_lens_decoder_pd,
|
||
not_need_stop_pd,
|
||
draft_tokens_pd,
|
||
actual_draft_nums_pd,
|
||
]
|
||
|
||
for name, pd_val, np_val in zip(names, pd_tensors, out_np):
|
||
pd_arr = pd_val.numpy()
|
||
ok = np.array_equal(pd_arr, np_val)
|
||
print(f"{name:25s} equal :", ok)
|
||
|
||
# 也可以加 assert,配合 pytest
|
||
# assert all(np.array_equal(p.numpy(), n) for p,n in zip(pd_tensors, out_np))
|