# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np # tests/test_speculate_update_v3.py import paddle from fastdeploy.model_executor.ops.xpu import speculate_update_v3 # ---------------- NumPy 参考实现 ---------------- def speculate_update_v3_np( seq_lens_encoder, seq_lens_decoder, not_need_stop, draft_tokens, actual_draft_token_nums, accept_tokens, accept_num, stop_flags, seq_lens_this_time, is_block_step, stop_nums, ): """ 完全复现 CPU / CUDA 逻辑的 NumPy 参考版本(就地修改)。 """ stop_sum = 0 real_bsz = seq_lens_this_time.shape[0] max_bsz = stop_flags.shape[0] max_draft_tokens = draft_tokens.shape[1] for bid in range(max_bsz): stop_flag_now_int = 0 inactive = bid >= real_bsz block_step = (not inactive) and is_block_step[bid] if (not block_step) and (not inactive): if stop_flags[bid]: stop_flag_now_int = 1 # encoder 长度为 0 时直接累加 decoder if seq_lens_encoder[bid] == 0: seq_lens_decoder[bid] += accept_num[bid] # draft 长度自适应 if (seq_lens_encoder[bid] == 0) and (seq_lens_this_time[bid] > 1): cur_len = actual_draft_token_nums[bid] if accept_num[bid] - 1 == cur_len: # 全部接受 if cur_len + 2 <= max_draft_tokens - 1: cur_len += 2 elif cur_len + 1 <= max_draft_tokens - 1: cur_len += 1 else: cur_len = max_draft_tokens - 1 else: # 有拒绝 cur_len = max(1, cur_len - 1) actual_draft_token_nums[bid] = cur_len # 偿还 encoder 欠账 if seq_lens_encoder[bid] != 0: seq_lens_decoder[bid] += seq_lens_encoder[bid] seq_lens_encoder[bid] = 0 # 写回下一轮首 token draft_tokens[bid, 0] = accept_tokens[bid, accept_num[bid] - 1] # 停止则清零 decoder if stop_flag_now_int: seq_lens_decoder[bid] = 0 elif inactive: stop_flag_now_int = 1 # padding slot 视为 stop stop_sum += stop_flag_now_int # print("stop_sum: ", stop_sum) not_need_stop[0] = stop_sum < stop_nums[0] # 返回引用,仅供一致性 return ( seq_lens_encoder, seq_lens_decoder, not_need_stop, draft_tokens, actual_draft_token_nums, ) # ---------------- 生成随机输入 ---------------- def gen_inputs( max_bsz=512, # 与 CUDA BlockSize 对齐 max_draft_tokens=16, real_bsz=123, # 可自调;须 ≤ max_bsz seed=2022, ): rng = np.random.default_rng(seed) # 基本张量 seq_lens_encoder = rng.integers(0, 3, size=max_bsz, dtype=np.int32) seq_lens_decoder = rng.integers(0, 20, size=max_bsz, dtype=np.int32) not_need_stop = rng.integers(0, 1, size=1, dtype=np.bool_) draft_tokens = rng.integers(0, 1000, size=(max_bsz, max_draft_tokens), dtype=np.int64) actual_draft_nums = rng.integers(1, max_draft_tokens, size=max_bsz, dtype=np.int32) accept_tokens = rng.integers(0, 1000, size=(max_bsz, max_draft_tokens), dtype=np.int64) accept_num = rng.integers(1, max_draft_tokens, size=max_bsz, dtype=np.int32) stop_flags = rng.integers(0, 2, size=max_bsz, dtype=np.bool_) is_block_step = rng.integers(0, 2, size=max_bsz, dtype=np.bool_) stop_nums = np.array([5], dtype=np.int64) # 阈值随意 # seq_lens_this_time 仅取 real_bsz 长度 seq_lens_this_time = rng.integers(1, max_draft_tokens, size=real_bsz, dtype=np.int32) return { "seq_lens_encoder": seq_lens_encoder, "seq_lens_decoder": seq_lens_decoder, "not_need_stop": not_need_stop, "draft_tokens": draft_tokens, "actual_draft_token_nums": actual_draft_nums, "accept_tokens": accept_tokens, "accept_num": accept_num, "stop_flags": stop_flags, "seq_lens_this_time": seq_lens_this_time, "is_block_step": is_block_step, "stop_nums": stop_nums, # real_bsz = real_bsz, # max_bsz = max_bsz, # max_draft_tokens = max_draft_tokens } # ------------------- 单测主体 ------------------- inputs = gen_inputs(max_bsz=512, max_draft_tokens=32, real_bsz=201) # ---- Paddle 端 ---- paddle_inputs = {} for k, v in inputs.items(): if k in ("real_bsz", "max_bsz", "max_draft_tokens"): paddle_inputs[k] = v # 纯 python int else: if k == "not_need_stop": paddle_inputs[k] = paddle.to_tensor(v, place=paddle.CPUPlace()) else: # 其余张量保持默认 place(想测 GPU 就手动加 place=paddle.CUDAPlace(0)) paddle_inputs[k] = paddle.to_tensor(v) # ---- NumPy 端 ---- # 为保证初值一致,这里必须复制 Paddle 入参的 numpy 值再传给参考实现 np_inputs = { k: (paddle_inputs[k].numpy().copy() if isinstance(paddle_inputs[k], paddle.Tensor) else paddle_inputs[k]) for k in paddle_inputs } # 调用自定义算子 # print("seq_lens_encoder_xpu_before: ", paddle_inputs["seq_lens_encoder"]) out_pd = speculate_update_v3(**paddle_inputs) # print("seq_lens_encoder_xpu_after: ", out_pd[0]) # print("not_need_stop: ", out_pd[2]) # speculate_update_v3 返回 5 个张量(与 Outputs 对应) ( seq_lens_encoder_pd, seq_lens_decoder_pd, not_need_stop_pd, draft_tokens_pd, actual_draft_nums_pd, ) = out_pd # print("seq_lens_encoder_np_before: ", np_inputs["seq_lens_encoder"]) out_np = speculate_update_v3_np(**np_inputs) # print("seq_lens_encoder_np_after: ", out_np[0]) # print("not_need_stop: ", out_np[2]) # ---------------- 校对 ---------------- names = [ "seq_lens_encoder", "seq_lens_decoder", "not_need_stop", "draft_tokens", "actual_draft_token_nums", ] pd_tensors = [ seq_lens_encoder_pd, seq_lens_decoder_pd, not_need_stop_pd, draft_tokens_pd, actual_draft_nums_pd, ] for name, pd_val, np_val in zip(names, pd_tensors, out_np): pd_arr = pd_val.numpy() ok = np.array_equal(pd_arr, np_val) print(f"{name:25s} equal :", ok) # 也可以加 assert,配合 pytest # assert all(np.array_equal(p.numpy(), n) for p,n in zip(pd_tensors, out_np))