mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	 02eab973ce
			
		
	
	02eab973ce
	
	
	
		
			
			* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md
		
			
				
	
	
		
			269 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			269 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
 | ||
| [English](../../en/faq/develop_a_new_model.md) | 中文
 | ||
| 
 | ||
| # FastDeploy集成新模型流程
 | ||
| 
 | ||
| 在FastDeploy里面新增一个模型,包括增加C++/Python的部署支持。 本文以torchvision v0.12.0中的ResNet50模型为例,介绍使用FastDeploy做外部[模型集成](#modelsupport),具体包括如下3步。
 | ||
| 
 | ||
| | 步骤 | 说明                                | 创建或修改的文件                            |
 | ||
| |:------:|:-------------------------------------:|:---------------------------------------------:|
 | ||
| | [1](#step2)    |  在fastdeploy/vision相应任务模块增加模型实现       | resnet.h、resnet.cc、vision.h                     |
 | ||
| | [2](#step4)     | 通过pybind完成Python接口绑定 | resnet_pybind.cc、classification_pybind.cc |
 | ||
| | [3](#step5)     | 实现Python相应调用接口    | resnet.py、\_\_init\_\_.py                        |
 | ||
| 
 | ||
| 在完成上述3步之后,一个外部模型就集成好了。
 | ||
| <br />
 | ||
| 如果您想为FastDeploy贡献代码,还需要为新增模型添加测试代码、说明文档和代码注释,可在[测试](#test)中查看。
 | ||
| ## 模型集成     <span id="modelsupport"></span>
 | ||
| 
 | ||
| ### 模型准备  <span id="step1"></span>
 | ||
| 
 | ||
| 
 | ||
| 在集成外部模型之前,先要将训练好的模型(.pt,.pdparams 等)转换成FastDeploy支持部署的模型格式(.onnx,.pdmodel)。多数开源仓库会提供模型转换脚本,可以直接利用脚本做模型的转换。由于torchvision没有提供转换脚本,因此手动编写转换脚本,本文中将 `torchvison.models.resnet50` 转换为 `resnet50.onnx`, 参考代码如下:
 | ||
| 
 | ||
| ```python
 | ||
| import torch
 | ||
| import torchvision.models as models
 | ||
| model = models.resnet50(pretrained=True)
 | ||
| batch_size = 1  #批处理大小
 | ||
| input_shape = (3, 224, 224)   #输入数据,改成自己的输入shape
 | ||
| model.eval()
 | ||
| x = torch.randn(batch_size, *input_shape)	# 生成张量
 | ||
| export_onnx_file = "resnet50.onnx"			# 目的ONNX文件名
 | ||
| torch.onnx.export(model,
 | ||
|                     x,
 | ||
|                     export_onnx_file,
 | ||
|                     opset_version=12,
 | ||
|                     input_names=["input"],	# 输入名
 | ||
|                     output_names=["output"],	# 输出名
 | ||
|                     dynamic_axes={"input":{0:"batch_size"},  # 批处理变量
 | ||
|                                     "output":{0:"batch_size"}})
 | ||
| ```
 | ||
| 执行上述脚本将会得到 `resnet50.onnx` 文件。
 | ||
| 
 | ||
| ### C++部分  <span id="step2"></span>
 | ||
| * 创建`resnet.h`文件
 | ||
|   * 创建位置
 | ||
|     * FastDeploy/fastdeploy/vision/classification/contrib/resnet.h (FastDeploy/C++代码存放位置/视觉模型/任务名称/外部模型/模型名.h)
 | ||
|   * 创建内容
 | ||
|     * 首先在resnet.h中创建 ResNet类并继承FastDeployModel父类,之后声明`Predict`、`Initialize`、`Preprocess`、`Postprocess`和`构造函数`,以及必要的变量,具体的代码细节请参考[resnet.h](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-69128489e918f305c208476ba793d8167e77de2aa7cadf5dcbac30da448bd28e)。
 | ||
| 
 | ||
| ```C++
 | ||
| class FASTDEPLOY_DECL ResNet : public FastDeployModel {
 | ||
|  public:
 | ||
|   ResNet(...);
 | ||
|   virtual bool Predict(...);
 | ||
|  private:
 | ||
|   bool Initialize();
 | ||
|   bool Preprocess(...);
 | ||
|   bool Postprocess(...);
 | ||
| };
 | ||
| ```
 | ||
| 
 | ||
| * 创建`resnet.cc`文件
 | ||
|   * 创建位置
 | ||
|     * FastDeploy/fastdeploy/vision/classification/contrib/resnet.cc (FastDeploy/C++代码存放位置/视觉模型/任务名称/外部模型/模型名.cc)
 | ||
|   * 创建内容
 | ||
|     * 在`resnet.cc`中实现`resnet.h`中声明函数的具体逻辑,其中`PreProcess` 和 `PostProcess`需要参考源官方库的前后处理逻辑复现,ResNet每个函数具体逻辑如下,具体的代码请参考[resnet.cc](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-d229d702de28345253a53f2a5839fd2c638f3d32fffa6a7d04d23db9da13a871)。
 | ||
| 
 | ||
| ```C++
 | ||
| ResNet::ResNet(...) {
 | ||
|   // 构造函数逻辑
 | ||
|   // 1. 指定 Backend 2. 设置RuntimeOption 3. 调用Initialize()函数
 | ||
| }
 | ||
| bool ResNet::Initialize() {
 | ||
|   // 初始化逻辑
 | ||
|   // 1. 全局变量赋值 2. 调用InitRuntime()函数
 | ||
|   return true;
 | ||
| }
 | ||
| bool ResNet::Preprocess(Mat* mat, FDTensor* output) {
 | ||
| // 前处理逻辑
 | ||
| // 1. Resize 2. BGR2RGB 3. Normalize 4. HWC2CHW 5. 处理结果存入 FDTensor类中  
 | ||
|   return true;
 | ||
| }
 | ||
| bool ResNet::Postprocess(FDTensor& infer_result, ClassifyResult* result, int topk) {
 | ||
|   //后处理逻辑
 | ||
|   // 1. Softmax 2. Choose topk labels 3. 结果存入 ClassifyResult类
 | ||
|   return true;
 | ||
| }
 | ||
| bool ResNet::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
 | ||
|   Preprocess(...)
 | ||
|   Infer(...)
 | ||
|   Postprocess(...)
 | ||
|   return true;
 | ||
| }
 | ||
| ```
 | ||
| <span id="step3"></span>
 | ||
| * 在`vision.h`文件中加入新增模型文件
 | ||
|   * 修改位置
 | ||
|     * FastDeploy/fastdeploy/vision.h
 | ||
|   * 修改内容
 | ||
| 
 | ||
| ```C++
 | ||
| #ifdef ENABLE_VISION
 | ||
| #include "fastdeploy/vision/classification/contrib/resnet.h"
 | ||
| #endif
 | ||
| ```
 | ||
| 
 | ||
| 
 | ||
| ### Pybind部分  <span id="step4"></span>
 | ||
| 
 | ||
| * 创建Pybind文件  
 | ||
|   * 创建位置
 | ||
|     * FastDeploy/fastdeploy/vision/classification/contrib/resnet_pybind.cc (FastDeploy/C++代码存放位置/视觉模型/任务名称/外部模型/模型名_pybind.cc)
 | ||
|   * 创建内容
 | ||
|     * 利用Pybind将C++中的函数变量绑定到Python中,具体代码请参考[resnet_pybind.cc](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-270af0d65720310e2cfbd5373c391b2110d65c0f4efa547f7b7eeffcb958bdec)。
 | ||
| ```C++
 | ||
| void BindResNet(pybind11::module& m) {
 | ||
|   pybind11::class_<vision::classification::ResNet, FastDeployModel>(
 | ||
|       m, "ResNet")
 | ||
|       .def(pybind11::init<std::string, std::string, RuntimeOption, ModelFormat>())
 | ||
|       .def("predict", ...)
 | ||
|       .def_readwrite("size", &vision::classification::ResNet::size)
 | ||
|       .def_readwrite("mean_vals", &vision::classification::ResNet::mean_vals)
 | ||
|       .def_readwrite("std_vals", &vision::classification::ResNet::std_vals);
 | ||
| }
 | ||
| ```
 | ||
| 
 | ||
| * 调用Pybind函数
 | ||
|   * 修改位置
 | ||
|     * FastDeploy/fastdeploy/vision/classification/classification_pybind.cc (FastDeploy/C++代码存放位置/视觉模型/任务名称/任务名称}_pybind.cc)
 | ||
|   * 修改内容
 | ||
| ```C++
 | ||
| void BindResNet(pybind11::module& m);
 | ||
| void BindClassification(pybind11::module& m) {
 | ||
|   auto classification_module =
 | ||
|       m.def_submodule("classification", "Image classification models.");
 | ||
|   BindResNet(classification_module);
 | ||
| }
 | ||
| ```
 | ||
| 
 | ||
| 
 | ||
| ### Python部分  <span id="step5"></span>
 | ||
| 
 | ||
| 
 | ||
| * 创建`resnet.py`文件
 | ||
|   * 创建位置
 | ||
|     * FastDeploy/python/fastdeploy/vision/classification/contrib/resnet.py (FastDeploy/Python代码存放位置/fastdeploy/视觉模型/任务名称/外部模型/模型名.py)
 | ||
|   * 创建内容
 | ||
|     * 创建ResNet类继承自FastDeployModel,实现 `\_\_init\_\_`、Pybind绑定的函数(如`predict()`)、以及`对Pybind绑定的全局变量进行赋值和获取的函数`,具体代码请参考[resnet.py](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-a4dc5ec2d450e91f1c03819bf314c238b37ac678df56d7dea3aab7feac10a157)。
 | ||
| 
 | ||
| ```python
 | ||
| class ResNet(FastDeployModel):
 | ||
|     def __init__(self, ...):
 | ||
|         self._model = C.vision.classification.ResNet(...)
 | ||
|     def predict(self, input_image, topk=1):
 | ||
|         return self._model.predict(input_image, topk)
 | ||
|     @property
 | ||
|     def size(self):
 | ||
|         return self._model.size
 | ||
|     @size.setter
 | ||
|     def size(self, wh):
 | ||
|         ...
 | ||
| ```
 | ||
| <span id="step6"></span>
 | ||
| * 导入ResNet类
 | ||
|   * 修改位置
 | ||
|     * FastDeploy/python/fastdeploy/vision/classification/\_\_init\_\_.py (FastDeploy/Python代码存放位置/fastdeploy/视觉模型/任务名称/\_\_init\_\_.py)
 | ||
|   * 修改内容
 | ||
| 
 | ||
| ```Python
 | ||
| from .contrib.resnet import ResNet
 | ||
| ```
 | ||
| 
 | ||
| ## 测试  <span id="test"></span>
 | ||
| ### 编译
 | ||
|   * C++
 | ||
|     * 位置:FastDeploy/
 | ||
| 
 | ||
| ```
 | ||
| mkdir build & cd build
 | ||
| cmake .. -DENABLE_ORT_BACKEND=ON -DENABLE_VISION=ON -DCMAKE_INSTALL_PREFIX=${PWD/fastdeploy-0.0.3
 | ||
| -DENABLE_PADDLE_BACKEND=ON -DENABLE_TRT_BACKEND=ON -DWITH_GPU=ON -DTRT_DIRECTORY=/PATH/TO/TensorRT/
 | ||
| make -j8
 | ||
| make install
 | ||
| ```
 | ||
| 
 | ||
|  编译会得到 build/fastdeploy-0.0.3/。
 | ||
| 
 | ||
|   * Python
 | ||
|     * 位置:FastDeploy/python/
 | ||
| 
 | ||
| ```
 | ||
| export TRT_DIRECTORY=/PATH/TO/TensorRT/    # 如果用TensorRT 需要填写TensorRT所在位置,并开启 ENABLE_TRT_BACKEND
 | ||
| export ENABLE_TRT_BACKEND=ON
 | ||
| export WITH_GPU=ON
 | ||
| export ENABLE_PADDLE_BACKEND=ON
 | ||
| export ENABLE_OPENVINO_BACKEND=ON
 | ||
| export ENABLE_VISION=ON
 | ||
| export ENABLE_ORT_BACKEND=ON
 | ||
| python setup.py build
 | ||
| python setup.py bdist_wheel
 | ||
| cd dist
 | ||
| pip install fastdeploy_gpu_python-版本号-cpxx-cpxxm-系统架构.whl
 | ||
| ```
 | ||
| 
 | ||
| ### 编写测试代码
 | ||
|   * 创建位置: FastDeploy/examples/vision/classification/resnet/ (FastDeploy/示例目录/视觉模型/任务名称/模型名/)
 | ||
|   * 创建目录结构
 | ||
| 
 | ||
| ```
 | ||
| .
 | ||
| ├── cpp
 | ||
| │   ├── CMakeLists.txt
 | ||
| │   ├── infer.cc    // C++ 版本测试代码
 | ||
| │   └── README.md   // C++版本使用文档
 | ||
| ├── python
 | ||
| │   ├── infer.py    // Python 版本测试代码
 | ||
| │   └── README.md   // Python版本使用文档
 | ||
| └── README.md   // ResNet 模型集成说明文档
 | ||
| ```
 | ||
| 
 | ||
| * C++
 | ||
|   * 编写CmakeLists文件、C++ 代码以及 README.md 内容请参考[cpp/](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-afcbe607b796509581f89e38b84190717f1eeda2df0419a2ac9034197ead5f96)。
 | ||
|   * 编译 infer.cc
 | ||
|     * 位置:FastDeploy/examples/vision/classification/resnet/cpp/
 | ||
| 
 | ||
| ```
 | ||
| mkdir build & cd build
 | ||
| cmake .. -DFASTDEPLOY_INSTALL_DIR=/PATH/TO/FastDeploy/build/fastdeploy-0.0.3/
 | ||
| make
 | ||
| ```
 | ||
| 
 | ||
| * Python
 | ||
|   * Python 代码以及 README.md 内容请参考[python/](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-5a0d6be8c603a8b81454ac14c17fb93555288d9adf92bbe40454449309700135)。
 | ||
| 
 | ||
| ### 为代码添加注释
 | ||
| 为了方便用户理解代码,我们需要为新增代码添加注释,添加注释方法可参考如下示例。
 | ||
| - C++ 代码
 | ||
| 您需要在resnet.h文件中为函数和变量增加注释,有如下三种注释方式,具体可参考[resnet.h](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-69128489e918f305c208476ba793d8167e77de2aa7cadf5dcbac30da448bd28e)。
 | ||
| 
 | ||
| ```C++
 | ||
| /** \brief Predict for the input "im", the result will be saved in "result".
 | ||
| *
 | ||
| * \param[in] im Input image for inference.
 | ||
| * \param[in] result Saving the inference result.
 | ||
| * \param[in] topk The length of return values, e.g., if topk==2, the result will include the 2 most possible class label for input image.
 | ||
| */
 | ||
| virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1);
 | ||
| /// Tuple of (width, height)
 | ||
| std::vector<int> size;
 | ||
| /*! @brief Initialize for ResNet model, assign values to the global variables and call InitRuntime()
 | ||
| */
 | ||
| bool Initialize();
 | ||
| ```
 | ||
| - Python 代码
 | ||
| 你需要为resnet.py文件中的函数和变量增加适当的注释,示例如下,具体可参考[resnet.py](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-a4dc5ec2d450e91f1c03819bf314c238b37ac678df56d7dea3aab7feac10a157)。
 | ||
| 
 | ||
| ```python  
 | ||
|   def predict(self, input_image, topk=1):
 | ||
|     """Classify an input image
 | ||
|     :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
 | ||
|     :param topk: (int)The topk result by the classify confidence score, default 1
 | ||
|     :return: ClassifyResult
 | ||
|     """
 | ||
|     return self._model.predict(input_image, topk)
 | ||
| ```
 | ||
| 
 | ||
| 对于集成模型过程中的其他文件,您也可以对实现的细节添加适当的注释说明。
 |