Files
FastDeploy/examples/vision/classification/paddleclas/quantize/cpp/README.md
Jason 3ff562aa77 Bump up to version 0.3.0 (#371)
* Update VERSION_NUMBER

* Update paddle_inference.cmake

* Delete docs directory

* release new docs

* update version number

* add vision result doc

* update version

* fix dead link

* fix vision

* fix dead link

* Update README_EN.md

* Update README_EN.md

* Update README_EN.md

* Update README_EN.md

* Update README_EN.md

* Update README_CN.md

* Update README_EN.md

* Update README_CN.md

* Update README_EN.md

* Update README_CN.md

* Update README_EN.md

* Update README_EN.md

Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com>
2022-10-15 22:01:27 +08:00

34 lines
1.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# PaddleClas 量化模型 Python部署示例
本目录下提供的`infer.cc`,可以帮助用户快速完成PaddleClas量化模型在CPU/GPU上的部署推理加速.
## 部署准备
### FastDeploy环境准备
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
- 2. 用户可以使用FastDeploy提供的[一键模型量化工具](../../../../../../tools/quantization/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的inference_cls.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
## 以量化后的ResNet50_Vd模型为例, 进行部署
在本目录执行如下命令即可完成编译,以及量化模型部署.
```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.3.0.tgz
tar xvf fastdeploy-linux-x64-0.3.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.3.0
make -j
#下载FastDeloy提供的ResNet50_Vd量化模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/resnet50_vd_ptq.tar
tar -xvf resnet50_vd_ptq.tar
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# 在CPU上使用Paddle-Inference推理量化模型
./infer_demo resnet50_vd_ptq ILSVRC2012_val_00000010.jpeg 0
# 在GPU上使用TensorRT推理量化模型
./infer_demo resnet50_vd_ptq ILSVRC2012_val_00000010.jpeg 1
```