Files
FastDeploy/docs/docs_en/api/function.md
2022-09-17 19:28:30 +08:00

280 lines
8.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# FDTensor C++ Tensor quantization function
FDTensor is FastDeploy's struct that represents the tensor at the C++ level. The struct is mainly used to manage the input and output data of the model during inference deployment and supports different Runtime backends.
In the development of C++-based inference deployment applications, developers often need to process some data on the input and output to get the actual input or the actual output of the application. This pre-processing data logic can easily be done by the original C++ standard library. But it can be difficult to develop, e.g. to find the maximum value for the 2nd dimension of a 3-dimensional Tensor. To solve this problem, FastDeploy has developed a set of C++ tensor functions based on FDTensor to reduce costs and increase efficiency for FastDeploy developers. There are currently four main functions: Reduce, Manipulate, Math and Elementwise.
## Reduce Class Function
Currently FastDeploy supports 7 types of Reduce class functions Max, Min, Sum, All, Any, Mean, Prod.
### Max
#### Function Signature
```c++
/** Excute the maximum operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
void Max(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
```
#### Demo
```c++
FDTensor input, output;
std::vector<int> inputs = {2, 4, 3, 7, 1, 5};
input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data());
// Calculate the max value for axis 0 of `inputs`
// The output result would be [[7, 4, 5]].
Max(input, &output, {0}, /* keep_dim = */true);
```
### Min
#### Function Signature
```c++
/** Excute the minimum operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
void Min(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
```
#### Demo
```c++
FDTensor input, output;
std::vector<int> inputs = {2, 4, 3, 7, 1, 5};
input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data());
// Calculate the min value for axis 0 of `inputs`
// The output result would be [[2, 1, 3]].
Min(input, &output, {0}, /* keep_dim = */true);
```
### Sum
#### Function Signature
```c++
/** Excute the sum operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
void Sum(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
```
#### Demo
```c++
FDTensor input, output;
std::vector<int> inputs = {2, 4, 3, 7, 1, 5};
input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data());
// Calculate the sum value for axis 0 of `inputs`
// The output result would be [[9, 5, 8]].
Sum(input, &output, {0}, /* keep_dim = */true);
```
### Mean
#### Function Signature
```c++
/** Excute the mean operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
void Mean(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
```
#### Demo
```c++
FDTensor input, output;
std::vector<int> inputs = {2, 4, 3, 7, 1, 5};
input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data());
// Calculate the mean value for axis 0 of `inputs`
// The output result would be [[4, 2, 4]].
Mean(input, &output, {0}, /* keep_dim = */true);
```
### Prod
#### Function Signature
```c++
/** Excute the product operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
void Prod(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
```
#### Demo
```c++
FDTensor input, output;
std::vector<int> inputs = {2, 4, 3, 7, 1, 5};
input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data());
// Calculate the product value for axis 0 of `inputs`
// The output result would be [[14, 4, 15]].
Prod(input, &output, {0}, /* keep_dim = */true);
```
### Any
#### Function Signature
```c++
/** Excute the any operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
void Any(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
```
#### Demo
```c++
FDTensor input, output;
std::array<bool, 6> bool_inputs = {false, false, true, true, false, true};
input.SetExternalData({2, 3}, FDDataType::INT32, bool_inputs.data());
// Calculate the any value for axis 0 of `inputs`
// The output result would be [[true, false, true]].
Any(input, &output, {0}, /* keep_dim = */true);
```
### All
#### Function Signature
```c++
/** Excute the all operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
void All(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
```
#### Demo
```c++
FDTensor input, output;
std::array<bool, 6> bool_inputs = {false, false, true, true, false, true};
input.SetExternalData({2, 3}, FDDataType::INT32, bool_inputs.data());
// Calculate the all value for axis 0 of `inputs`
// The output result would be [[false, false, true]].
All(input, &output, {0}, /* keep_dim = */true);
```
## Manipulate Class Function
Currently FastDeploy supports 1 Manipulate class function: Transpose.
### Transpose
#### Function Signature
```c++
/** Excute the transpose operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which the input tensor will transpose.
*/
void Transpose(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims);
```
#### Demo
```c++
FDTensor input, output;
std::vector<float> inputs = {2, 4, 3, 7, 1, 5};
input.SetExternalData({2, 3}, FDDataType::FP32, inputs.data());
// Transpose the input tensor with axis {1, 0}.
// The output result would be [[2, 7], [4, 1], [3, 5]]
Transpose(input, &output, {1, 0});
```
## Math Class Function
Currently FastDeploy supports 1 Math class function: Softmax.
### Softmax
#### Function Signature
```c++
/** Excute the softmax operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param axis The axis to be computed softmax value.
*/
void Softmax(const FDTensor& x, FDTensor* out, int axis = -1);
```
#### Demo
```c++
FDTensor input, output;
CheckShape check_shape;
CheckData check_data;
std::vector<float> inputs = {1, 2, 3, 4, 5, 6};
input.SetExternalData({2, 3}, FDDataType::FP32, inputs.data());
// Transpose the input tensor with axis {1, 0}.
// The output result would be
// [[0.04742587, 0.04742587, 0.04742587],
// [0.95257413, 0.95257413, 0.95257413]]
Softmax(input, &output, 0);
```
## Elementwise Class Function
To be continued...