mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 10:00:29 +08:00
125 lines
4.2 KiB
Markdown
125 lines
4.2 KiB
Markdown
# 兼容 OpenAI 协议的服务化部署
|
||
|
||
FastDeploy 提供与 OpenAI 协议兼容的服务化部署方案。用户可以通过如下命令快速进行部署:
|
||
|
||
```bash
|
||
python -m fastdeploy.entrypoints.openai.api_server \
|
||
--model baidu/ERNIE-4.5-0.3B-Paddle \
|
||
--port 8188 --tensor-parallel-size 8 \
|
||
--max-model-len 32768
|
||
```
|
||
|
||
如果要启用输出token的logprob,用户可以通过如下命令快速进行部署:
|
||
|
||
```bash
|
||
python -m fastdeploy.entrypoints.openai.api_server \
|
||
--model baidu/ERNIE-4.5-0.3B-Paddle \
|
||
--port 8188 --tensor-parallel-size 8 \
|
||
--max-model-len 32768 \
|
||
--enable-logprob
|
||
```
|
||
|
||
服务部署时的命令行更多使用方式参考[参数说明](../parameters.md)。
|
||
|
||
## 发送用户请求
|
||
|
||
FastDeploy 接口兼容 OpenAI 协议,可以直接使用 OpenAI 的请求方式发送用户请求。
|
||
|
||
使用 curl 命令发送用户请求示例如下:
|
||
|
||
```bash
|
||
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"messages": [
|
||
{"role": "user", "content": "Hello!"}
|
||
]
|
||
}'
|
||
```
|
||
|
||
使用 curl 命令示例,演示如何在用户请求中包含logprobs参数:
|
||
|
||
```bash
|
||
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"messages": [
|
||
{"role": "user", "content": "Hello!"}, "logprobs": true, "top_logprobs": 5
|
||
]
|
||
}'
|
||
```
|
||
|
||
使用 Python 脚本发送用户请求示例如下:
|
||
|
||
```python
|
||
import openai
|
||
host = "0.0.0.0"
|
||
port = "8170"
|
||
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
|
||
|
||
response = client.chat.completions.create(
|
||
model="null",
|
||
messages=[
|
||
{"role": "system", "content": "I'm a helpful AI assistant."},
|
||
{"role": "user", "content": "把李白的静夜思改写为现代诗"},
|
||
],
|
||
stream=True,
|
||
)
|
||
for chunk in response:
|
||
if chunk.choices[0].delta:
|
||
print(chunk.choices[0].delta.content, end='')
|
||
print('\n')
|
||
```
|
||
|
||
关于 OpenAI 协议的说明可参考文档 [OpenAI Chat Compeltion API](https://platform.openai.com/docs/api-reference/chat/create)。
|
||
|
||
## 参数差异
|
||
### 请求参数差异
|
||
FastDeploy 与 OpenAI 协议的请求参数差异如下,其余请求参数会被忽略:
|
||
- `prompt` (仅支持 `v1/completions` 接口)
|
||
- `messages` (仅支持 `v1/chat/completions` 接口)
|
||
- `logprobs`: Optional[bool] = False (仅支持 `v1/chat/completions` 接口)
|
||
- `top_logprobs`: Optional[int] = None (仅支持 `v1/chat/completions` 接口。如果使用这个参数必须设置logprobs为True,取值大于等于0小于20)
|
||
- `frequency_penalty`: Optional[float] = 0.0
|
||
- `max_tokens`: Optional[int] = 16
|
||
- `presence_penalty`: Optional[float] = 0.0
|
||
- `stream`: Optional[bool] = False
|
||
- `stream_options`: Optional[StreamOptions] = None
|
||
- `temperature`: Optional[float] = None
|
||
- `top_p`: Optional[float] = None
|
||
- `metadata`: Optional[dict] = None (仅在v1/chat/compeltions中支持,用于配置额外参数, 如metadata={"enable_thinking": True})
|
||
- `min_tokens`: Optional[int] = 1 最小生成的Token个数
|
||
- `reasoning_max_tokens`: Optional[int] = None 思考内容最大Token数,默认与max_tokens一致
|
||
- `enable_thinking`: Optional[bool] = True 支持深度思考的模型是否打开思考
|
||
- `repetition_penalty`: Optional[float] = None: 直接对重复生成的token进行惩罚的系数(>1时惩罚重复,<1时鼓励重复)
|
||
|
||
> 注: 若为多模态模型 由于思考链默认打开导致输出过长,max tokens 可以设置为模型最长输出,或使用默认值。
|
||
|
||
### 返回字段差异
|
||
|
||
FastDeploy 增加的返回字段如下:
|
||
|
||
- `arrival_time`:返回所有 token 的累计耗时
|
||
- `reasoning_content`: 思考链的返回结果
|
||
|
||
返回参数总览:
|
||
|
||
```python
|
||
ChatCompletionStreamResponse:
|
||
id: str
|
||
object: str = "chat.completion.chunk"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
model: str
|
||
choices: List[ChatCompletionResponseStreamChoice]
|
||
ChatCompletionResponseStreamChoice:
|
||
index: int
|
||
delta: DeltaMessage
|
||
finish_reason: Optional[Literal["stop", "length"]] = None
|
||
arrival_time: Optional[float] = None
|
||
DeltaMessage:
|
||
role: Optional[str] = None
|
||
content: Optional[str] = None
|
||
token_ids: Optional[List[int]] = None
|
||
reasoning_content: Optional[str] = None
|
||
```
|