mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
76 lines
3.0 KiB
Markdown
76 lines
3.0 KiB
Markdown
# PaddleClas模型 Python部署示例
|
||
|
||
在部署前,需确认以下两个步骤
|
||
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
|
||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/quick_start)
|
||
|
||
本目录下提供`infer.py`快速完成ResNet50_vd在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||
|
||
```bash
|
||
#下载部署示例代码
|
||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||
cd FastDeploy/examples/vision/classification/paddleclas/python
|
||
|
||
# 下载ResNet50_vd模型文件和测试图片
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||
tar -xvf ResNet50_vd_infer.tgz
|
||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||
|
||
# CPU推理
|
||
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
|
||
# GPU推理
|
||
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
|
||
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
|
||
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1
|
||
```
|
||
|
||
运行完成后返回结果如下所示
|
||
```bash
|
||
ClassifyResult(
|
||
label_ids: 153,
|
||
scores: 0.686229,
|
||
)
|
||
```
|
||
|
||
## PaddleClasModel Python接口
|
||
|
||
```python
|
||
fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||
```
|
||
|
||
PaddleClas模型加载和初始化,其中model_file, params_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)
|
||
|
||
**参数**
|
||
|
||
> * **model_file**(str): 模型文件路径
|
||
> * **params_file**(str): 参数文件路径
|
||
> * **config_file**(str): 推理部署配置文件
|
||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||
|
||
### predict函数
|
||
|
||
> ```python
|
||
> PaddleClasModel.predict(input_image, topk=1)
|
||
> ```
|
||
>
|
||
> 模型预测结口,输入图像直接输出检测结果。
|
||
>
|
||
> **参数**
|
||
>
|
||
> > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||
> > * **topk**(int):返回预测概率最高的topk个分类结果,默认为1
|
||
|
||
> **返回**
|
||
>
|
||
> > 返回`fastdeploy.vision.ClassifyResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
|
||
|
||
## 其它文档
|
||
|
||
- [PaddleClas 模型介绍](..)
|
||
- [PaddleClas C++部署](../cpp)
|
||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)
|