mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
	
		
			1.5 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.5 KiB
		
	
	
	
	
	
	
	
Runtime
After configuring RuntimeOption, developers can create Runtime for model inference on different hardware based on different backends.
Python Class
class Runtime(runtime_option)
Parameters
- runtime_option(fastdeploy.RuntimeOption): Configured RuntimeOption class and instance.
Member function
infer(data)
Model inference based on input data
Parameters
- data(dict({str: np.ndarray}): Input dict data, and key is input name, value is np.ndarray
Return Value
Returns a list, whose length equals the number of elements in the original model; elements in the list are np.ndarray
num_inputs()
Input number that returns to the model
num_outputs()
Output number that returns to the model
C++ Class
class Runtime
Member function
bool Init(const RuntimeOption& runtime_option)
Model loading initialization
Parameters
- runtime_option: Configured RuntimeOption class and instance
Return Value
Returns TRUE for successful initialisation, FALSE otherwise
bool Infer(vector<FDTensor>& inputs, vector<FDTensor>* outputs)
Inference from the input and write the result to outputs
Parameters
- inputs: Input data
- outputs: Output data
Return Value
Returns TRUE for successful inference, FALSE otherwise
int NumInputs()
Input number that returns to the model
input NumOutputs()
Output number that returns to the model
