Files
FastDeploy/docs/cn/quick_start/models/python.md
charl-u 02eab973ce [Doc]Add English version of documents in docs/cn and api/vision_results (#931)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md
2022-12-22 18:15:01 +08:00

73 lines
2.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[English](../../../en/quick_start/models/python.md) | 中文
# PPYOLOE Python部署
确认开发环境已安装FastDeploy参考[FastDeploy安装](../../build_and_install/)安装预编译的FastDeploy或根据自己需求进行编译安装。
本文档以PaddleDetection目标检测模型PPYOLOE为例展示CPU上的推理示例
## 1. 获取模型和测试图像
``` python
import fastdeploy as fd
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz"
image_url = "https://bj.bcebos.com/fastdeploy/tests/test_det.jpg"
fd.download_and_decompress(model_url, path=".")
fd.download(image_url, path=".")
```
## 2. 加载模型
- 更多模型的示例可参考[FastDeploy/examples](https://github.com/PaddlePaddle/FastDeploy/tree/develop/examples)
``` python
model_file = "ppyoloe_crn_l_300e_coco/model.pdmodel"
params_file = "ppyoloe_crn_l_300e_coco/model.pdiparams"
infer_cfg_file = "ppyoloe_crn_l_300e_coco/infer_cfg.yml"
# 模型推理的配置信息
option = fd.RuntimeOption()
model = fd.vision.detection.PPYOLOE(model_file, params_file, infer_cfg_file, option)
```
加载模型完后,会输出提示如下,说明模型初始化的后端,以及运行的硬件设备
```
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OPENVINO in device Device::CPU.
```
## 3. 预测图片检测结果
``` python
import cv2
im = cv2.imread("test_det.jpg")
result = model.predict(im)
print(result)
```
预测完,输出预测结果如下
```
DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
415.047180,89.311569, 506.009613, 283.863098, 0.950423, 0
163.665710,81.914932, 198.585342, 166.760895, 0.896433, 0
581.788635,113.027618, 612.623474, 198.521713, 0.842596, 0
267.217224,89.777306, 298.796051, 169.361526, 0.837951, 0
104.465584,45.482422, 127.688850, 93.533867, 0.773348, 0
...
...
```
## 4. 可视化图片预测结果
``` python
vis_im = fd.vision.visualize.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)
```
可视化执行完,打开`vis_image.jpg`可视化效果如下
<div align="center">
<img src="https://user-images.githubusercontent.com/19339784/184326520-7075e907-10ed-4fad-93f8-52d0e35d4964.jpg", width=480px, height=320px />
</div>
## 其它文档
- [切换模型推理的硬件和后端](../../faq/how_to_change_backend.md)