Files
FastDeploy/docs/features/reasoning_output.md
2025-07-04 11:30:02 +08:00

72 lines
3.1 KiB
Markdown

# Reasoning Outputs
Reasoning models return an additional `reasoning_content` field in their output, which contains the reasoning steps that led to the final conclusion.
## Supported Models
| Model Name | Parser Name | Eable_thinking by Default |
|----------------|----------------|---------------------------|
| baidu/ERNIE-4.5-VL-424B-A47B-Paddle | ernie-45-vl | ✓ |
| baidu/ERNIE-4.5-VL-28B-A3B-Paddle | ernie-45-vl | ✓ |
The reasoning model requires a specified parser to extract reasoning content. The reasoning mode can be disabled by setting the `enable_thinking=False` parameter.
Interfaces that support toggling the reasoning mode:
1. `/v1/chat/completions` requests in OpenAI services.
2. `/v1/chat/completions` requests in the OpenAI Python client.
3. `llm.chat` requests in Offline interfaces.
For reasoning models, the length of the reasoning content can be controlled via `reasoning_max_tokens`. Add `metadata={"reasoning_max_tokens": 1024}` to the request.
### Quick Start
When launching the model service, specify the parser name using the `--reasoning-parser` argument.
This parser will process the model's output and extract the `reasoning_content` field.
```bash
python -m fastdeploy.entrypoints.openai.api_server \
--model /path/to/your/model \
--enable-mm \
--tensor-parallel-size 8 \
--port 8192 \
--quantization wint4 \
--reasoning-parser ernie-45-vl
```
Next, make a request to the model that should return the reasoning content in the response.
```bash
curl -X POST "http://0.0.0.0:8192/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
{"type": "text", "text": "Which era does the cultural relic in the picture belong to"}
]}
],
"metadata": {"enable_thinking": true}
}'
```
The `reasoning_content` field contains the reasoning steps to reach the final conclusion, while the `content` field holds the conclusion itself.
### Streaming chat completions
Streaming chat completions are also supported for reasoning models. The `reasoning_content` field is available in the `delta` field in `chat completion response chunks`
```python
from openai import OpenAI
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8192/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
chat_response = client.chat.completions.create(
messages=[
{"role": "user", "content": [ {"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
{"type": "text", "text": "Which era does the cultural relic in the picture belong to"}]}
],
model="vl",
stream=True,
metadata={"enable_thinking": True}
)
for chunk in chat_response:
if chunk.choices[0].delta is not None:
print(chunk.choices[0].delta, end='')
print("\n")
```