mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
126 lines
4.3 KiB
Python
126 lines
4.3 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import absolute_import
|
|
import logging
|
|
import os
|
|
import sys
|
|
|
|
def add_dll_search_dir(dir_path):
|
|
os.environ["path"] = dir_path + ";" + os.environ["path"]
|
|
sys.path.insert(0, dir_path)
|
|
if sys.version_info[:2] >= (3, 8):
|
|
os.add_dll_directory(dir_path)
|
|
|
|
if os.name == "nt":
|
|
current_path = os.path.abspath(__file__)
|
|
dirname = os.path.dirname(current_path)
|
|
third_libs_dir = os.path.join(dirname, "libs")
|
|
add_dll_search_dir(third_libs_dir)
|
|
for root, dirs, filenames in os.walk(third_libs_dir):
|
|
for d in dirs:
|
|
if d == "lib":
|
|
add_dll_search_dir(os.path.join(dirname, root, d))
|
|
|
|
from .fastdeploy_main import Frontend, Backend, FDDataType, TensorInfo, Device
|
|
from .fastdeploy_runtime import *
|
|
from . import fastdeploy_main as C
|
|
from . import vision
|
|
from .download import download, download_and_decompress
|
|
|
|
def TensorInfoStr(tensor_info):
|
|
message = "TensorInfo(name : '{}', dtype : '{}', shape : '{}')".format(
|
|
tensor_info.name, tensor_info.dtype, tensor_info.shape)
|
|
return message
|
|
|
|
|
|
class RuntimeOption:
|
|
def __init__(self):
|
|
self._option = C.RuntimeOption()
|
|
|
|
def set_model_path(self, model_path, params_path="", model_format="paddle"):
|
|
return self._option.set_model_path(model_path, params_path, model_format)
|
|
|
|
def use_gpu(self, device_id=0):
|
|
return self._option.use_gpu(device_id)
|
|
|
|
def use_cpu(self):
|
|
return self._option.use_cpu()
|
|
|
|
def set_cpu_thread_num(self, thread_num=8):
|
|
return self._option.set_cpu_thread_num(thread_num)
|
|
|
|
def use_paddle_backend(self):
|
|
return self._option.use_paddle_backend()
|
|
|
|
def use_ort_backend(self):
|
|
return self._option.use_ort_backend()
|
|
|
|
def use_trt_backend(self):
|
|
return self._option.use_trt_backend()
|
|
|
|
def enable_paddle_mkldnn(self):
|
|
return self._option.enable_paddle_mkldnn()
|
|
|
|
def disable_paddle_mkldnn(self):
|
|
return self._option.disable_paddle_mkldnn()
|
|
|
|
def set_paddle_mkldnn_cache_size(self, cache_size):
|
|
return self._option.set_paddle_mkldnn_cache_size(cache_size)
|
|
|
|
def set_trt_input_shape(self, tensor_name, min_shape, opt_shape=None, max_shape=None):
|
|
if opt_shape is None and max_shape is None:
|
|
opt_shape = min_shape
|
|
max_shape = min_shape
|
|
else:
|
|
assert opt_shape is not None and max_shape is not None, "Set min_shape only, or set min_shape, opt_shape, max_shape both."
|
|
return self._option.set_trt_input_shape(tensor_name, min_shape, opt_shape, max_shape)
|
|
|
|
def set_trt_cache_file(self, cache_file_path):
|
|
return self._option.set_trt_cache_file(cache_file_path)
|
|
|
|
def enable_trt_fp16(self):
|
|
return self._option.enable_trt_fp16()
|
|
|
|
def dissable_trt_fp16(self):
|
|
return self._option.disable_trt_fp16()
|
|
|
|
def __repr__(self):
|
|
attrs = dir(self._option)
|
|
message = "RuntimeOption(\n"
|
|
for attr in attrs:
|
|
if attr.startswith("__"):
|
|
continue
|
|
if hasattr(getattr(self._option, attr), "__call__"):
|
|
continue
|
|
message += " {} : {}\t\n".format(attr, getattr(self._option, attr))
|
|
message.strip("\n")
|
|
message += ")"
|
|
return message
|
|
|
|
|
|
def RuntimeOptionStr(runtime_option):
|
|
attrs = dir(runtime_option)
|
|
message = "RuntimeOption(\n"
|
|
for attr in attrs:
|
|
if attr.startswith("__"):
|
|
continue
|
|
if hasattr(getattr(runtime_option, attr), "__call__"):
|
|
continue
|
|
message += " {} : {}\t\n".format(attr, getattr(runtime_option, attr))
|
|
message.strip("\n")
|
|
message += ")"
|
|
return message
|
|
|
|
C.TensorInfo.__repr__ = TensorInfoStr
|
|
C.RuntimeOption.__repr__ = RuntimeOptionStr |