# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import logging import os import sys def add_dll_search_dir(dir_path): os.environ["path"] = dir_path + ";" + os.environ["path"] sys.path.insert(0, dir_path) if sys.version_info[:2] >= (3, 8): os.add_dll_directory(dir_path) if os.name == "nt": current_path = os.path.abspath(__file__) dirname = os.path.dirname(current_path) third_libs_dir = os.path.join(dirname, "libs") add_dll_search_dir(third_libs_dir) for root, dirs, filenames in os.walk(third_libs_dir): for d in dirs: if d == "lib": add_dll_search_dir(os.path.join(dirname, root, d)) from .fastdeploy_main import Frontend, Backend, FDDataType, TensorInfo, Device from .fastdeploy_runtime import * from . import fastdeploy_main as C from . import vision from .download import download, download_and_decompress def TensorInfoStr(tensor_info): message = "TensorInfo(name : '{}', dtype : '{}', shape : '{}')".format( tensor_info.name, tensor_info.dtype, tensor_info.shape) return message class RuntimeOption: def __init__(self): self._option = C.RuntimeOption() def set_model_path(self, model_path, params_path="", model_format="paddle"): return self._option.set_model_path(model_path, params_path, model_format) def use_gpu(self, device_id=0): return self._option.use_gpu(device_id) def use_cpu(self): return self._option.use_cpu() def set_cpu_thread_num(self, thread_num=8): return self._option.set_cpu_thread_num(thread_num) def use_paddle_backend(self): return self._option.use_paddle_backend() def use_ort_backend(self): return self._option.use_ort_backend() def use_trt_backend(self): return self._option.use_trt_backend() def enable_paddle_mkldnn(self): return self._option.enable_paddle_mkldnn() def disable_paddle_mkldnn(self): return self._option.disable_paddle_mkldnn() def set_paddle_mkldnn_cache_size(self, cache_size): return self._option.set_paddle_mkldnn_cache_size(cache_size) def set_trt_input_shape(self, tensor_name, min_shape, opt_shape=None, max_shape=None): if opt_shape is None and max_shape is None: opt_shape = min_shape max_shape = min_shape else: assert opt_shape is not None and max_shape is not None, "Set min_shape only, or set min_shape, opt_shape, max_shape both." return self._option.set_trt_input_shape(tensor_name, min_shape, opt_shape, max_shape) def set_trt_cache_file(self, cache_file_path): return self._option.set_trt_cache_file(cache_file_path) def enable_trt_fp16(self): return self._option.enable_trt_fp16() def dissable_trt_fp16(self): return self._option.disable_trt_fp16() def __repr__(self): attrs = dir(self._option) message = "RuntimeOption(\n" for attr in attrs: if attr.startswith("__"): continue if hasattr(getattr(self._option, attr), "__call__"): continue message += " {} : {}\t\n".format(attr, getattr(self._option, attr)) message.strip("\n") message += ")" return message def RuntimeOptionStr(runtime_option): attrs = dir(runtime_option) message = "RuntimeOption(\n" for attr in attrs: if attr.startswith("__"): continue if hasattr(getattr(runtime_option, attr), "__call__"): continue message += " {} : {}\t\n".format(attr, getattr(runtime_option, attr)) message.strip("\n") message += ")" return message C.TensorInfo.__repr__ = TensorInfoStr C.RuntimeOption.__repr__ = RuntimeOptionStr