mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	 4858a3c4b0
			
		
	
	4858a3c4b0
	
	
	
		
			
			* add paddle_trt in benchmark * update benchmark in device * update benchmark * update result doc * fixed for CI * update python api_docs * update index.rst * add runtime cpp examples * deal with comments * Update infer_paddle_tensorrt.py * Add runtime quick start * deal with comments Co-authored-by: Jason <928090362@qq.com>
		
			
				
	
	
		
			120 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # C++推理
 | ||
| 
 | ||
| 确认开发环境已准备FastDeploy C++部署库,参考[FastDeploy安装](../../build_and_install/)安装预编译的FastDeploy,或根据自己需求进行编译安装。
 | ||
| 
 | ||
| 本文档以 PaddleClas 分类模型 MobileNetV2 为例展示CPU上的推理示例
 | ||
| 
 | ||
| ## 1. 获取模型
 | ||
| 
 | ||
| ```bash
 | ||
| wget https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz
 | ||
| tar xvf mobilenetv2.tgz
 | ||
| ```
 | ||
| 
 | ||
| ## 2. 配置后端
 | ||
| 
 | ||
| 如下C++代码保存为`infer_paddle_onnxruntime.cc`
 | ||
| 
 | ||
| ``` c++
 | ||
| #include "fastdeploy/runtime.h"
 | ||
| 
 | ||
| namespace fd = fastdeploy;
 | ||
| 
 | ||
| int main(int argc, char* argv[]) {
 | ||
|   std::string model_file = "mobilenetv2/inference.pdmodel";
 | ||
|   std::string params_file = "mobilenetv2/inference.pdiparams";
 | ||
| 
 | ||
|   // setup option
 | ||
|   fd::RuntimeOption runtime_option;
 | ||
|   runtime_option.SetModelPath(model_file, params_file, fd::ModelFormat::PADDLE);
 | ||
|   runtime_option.UseOrtBackend();
 | ||
|   runtime_option.SetCpuThreadNum(12);
 | ||
|   // init runtime
 | ||
|   std::unique_ptr<fd::Runtime> runtime =
 | ||
|       std::unique_ptr<fd::Runtime>(new fd::Runtime());
 | ||
|   if (!runtime->Init(runtime_option)) {
 | ||
|     std::cerr << "--- Init FastDeploy Runitme Failed! "
 | ||
|               << "\n--- Model:  " << model_file << std::endl;
 | ||
|     return -1;
 | ||
|   } else {
 | ||
|     std::cout << "--- Init FastDeploy Runitme Done! "
 | ||
|               << "\n--- Model:  " << model_file << std::endl;
 | ||
|   }
 | ||
|   // init input tensor shape
 | ||
|   fd::TensorInfo info = runtime->GetInputInfo(0);
 | ||
|   info.shape = {1, 3, 224, 224};
 | ||
| 
 | ||
|   std::vector<fd::FDTensor> input_tensors(1);
 | ||
|   std::vector<fd::FDTensor> output_tensors(1);
 | ||
| 
 | ||
|   std::vector<float> inputs_data;
 | ||
|   inputs_data.resize(1 * 3 * 224 * 224);
 | ||
|   for (size_t i = 0; i < inputs_data.size(); ++i) {
 | ||
|     inputs_data[i] = std::rand() % 1000 / 1000.0f;
 | ||
|   }
 | ||
|   input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data());
 | ||
| 
 | ||
|   //get input name
 | ||
|   input_tensors[0].name = info.name;
 | ||
| 
 | ||
|   runtime->Infer(input_tensors, &output_tensors);
 | ||
| 
 | ||
|   output_tensors[0].PrintInfo();
 | ||
|   return 0;
 | ||
| }
 | ||
| ```
 | ||
| 加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备
 | ||
| ```
 | ||
| [INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init	Runtime initialized with Backend::OrtBackend in device Device::CPU.
 | ||
| ```
 | ||
| 
 | ||
| ## 3. 准备CMakeLists.txt
 | ||
| 
 | ||
| FastDeploy中包含多个依赖库,直接采用`g++`或编译器编译较为繁杂,推荐使用cmake进行编译配置。示例配置如下,
 | ||
| 
 | ||
| ```cmake
 | ||
| PROJECT(runtime_demo C CXX)
 | ||
| CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
 | ||
| 
 | ||
| # 指定下载解压后的fastdeploy库路径
 | ||
| option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
 | ||
| 
 | ||
| include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
 | ||
| 
 | ||
| # 添加FastDeploy依赖头文件
 | ||
| include_directories(${FASTDEPLOY_INCS})
 | ||
| 
 | ||
| add_executable(runtime_demo ${PROJECT_SOURCE_DIR}/infer_onnx_openvino.cc)
 | ||
| # 添加FastDeploy库依赖
 | ||
| target_link_libraries(runtime_demo ${FASTDEPLOY_LIBS})
 | ||
| ```
 | ||
| 
 | ||
| ## 4. 编译可执行程序
 | ||
| 
 | ||
| 打开命令行终端,进入`infer_paddle_onnxruntime.cc`和`CMakeLists.txt`所在的目录,执行如下命令
 | ||
| 
 | ||
| ```bash
 | ||
| cd examples/runtime/cpp
 | ||
| mkdir build & cd build
 | ||
| cmake .. -DFASTDEPLOY_INSTALL_DIR=$fastdeploy_cpp_sdk
 | ||
| make -j
 | ||
| ```
 | ||
| 
 | ||
| ```fastdeploy_cpp_sdk``` 为FastDeploy C++部署库路径
 | ||
| 
 | ||
| 编译完成后,使用如下命令执行可得到预测结果
 | ||
| ```bash
 | ||
| ./runtime_demo
 | ||
| ```
 | ||
| 执行时如提示`error while loading shared libraries: libxxx.so: cannot open shared object file: No such file...`,说明程序执行时没有找到FastDeploy的库路径,可通过执行如下命令,将FastDeploy的库路径添加到环境变量之后,重新执行二进制程序。
 | ||
| ```bash
 | ||
| source /Path/to/fastdeploy_cpp_sdk/fastdeploy_init.sh
 | ||
| ```
 | ||
| 
 | ||
| 本示例代码在各平台(Windows/Linux/Mac)上通用,但编译过程仅支持(Linux/Mac),Windows上使用msbuild进行编译,具体使用方式参考[Windows平台使用FastDeploy C++ SDK](../../faq/use_sdk_on_windows.md)
 | ||
| 
 | ||
| ## 其它文档
 | ||
| 
 | ||
| - [不同后端Runtime demo示例](../../../../examples/runtime/README.md)
 | ||
| - [切换模型推理的硬件和后端](../../faq/how_to_change_backend.md)
 |